Simulating NNLO QCD corrections for processes with giant K factors

Sebastian Sapeta

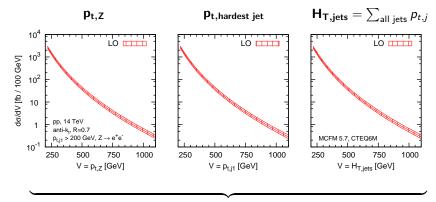
LPTHE, UPMC, CNRS, Paris

in collaboration with Gavin Salam and Mathieu Rubin ¹

HP².3rd, Florence, 14-17 September 2010

The problem of giant K factors

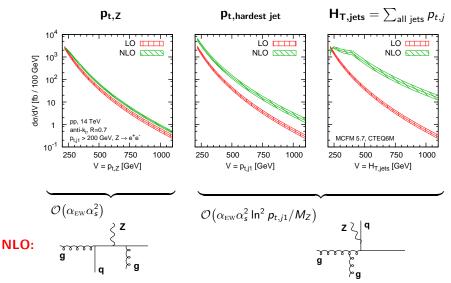
► Z+j at the LHC



LO:

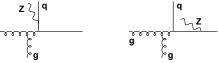
The problem of giant K factors

► Z+j at the LHC



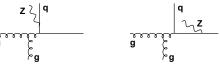
► The large K factor for the Z+jet comes from the new "dijet type" topologies that appear at NLO 72 | q

► The large K factor for the Z+jet comes from the new "dijet type" topologies that appear at NLO 7/9 | q



- ▶ though formally NLO diagrams for Z+jet, these are in fact leading contributions to $p_{t,j1}$ and H_T spectra
- this raises doubts about the accuracy of these predictions
- need for subleading contributions for Z+jet, in this case NNLO

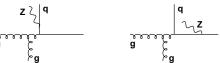
► The large K factor for the Z+jet comes from the new "dijet type" topologies that appear at NLO z ? |q|



- ▶ though formally NLO diagrams for Z+jet, these are in fact leading contributions to $p_{t,j1}$ and H_T spectra
- ▶ this raises doubts about the accuracy of these predictions
- need for subleading contributions for Z+jet, in this case NNLO

$$Z+j$$
 at NNLO $=$ $Z+3j$ tree $+$ $Z+2j$ 1-loop $+$ $Z+j$ 2-loop $Z+2j$ at NLO

► The large K factor for the Z+jet comes from the new "dijet type" topologies that appear at NLO 7/9 | q



- ▶ though formally NLO diagrams for Z+jet, these are in fact leading contributions to $p_{t,j1}$ and H_T spectra
- ▶ this raises doubts about the accuracy of these predictions
- ▶ need for subleading contributions for Z+jet, in this case NNLO

$$Z+j$$
 at NNLO = $Z+3j$ tree + $Z+2j$ 1-loop + $Z+j$ 2-loop $Z+2j$ at NLO

▶ 2-loop part

- ▶ we need it to cancel IR and collinear divergences from Z+2j at NLO result
- it will have the topology of Z+j at LO so it will not contribute much to the cross sections with giant K-factor

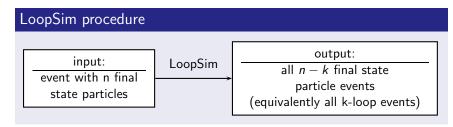
How to cancel the infrared and collinear singularities?

How to cancel the infrared and collinear singularities?

use unitarity to simulate the divergent part of 2-loop diagrams

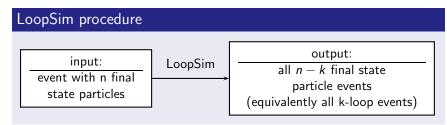
How to cancel the infrared and collinear singularities?

use unitarity to simulate the divergent part of 2-loop diagrams



How to cancel the infrared and collinear singularities?

use unitarity to simulate the divergent part of 2-loop diagrams



notation:

*n***LO** − simulated 1-loop

 $\bar{n}\bar{n}$ **LO** – simulated 2-loop and simulated 1-loop

 \bar{n} NLO − simulated 2-loop and exact 1-loop

How to cancel the infrared and collinear singularities?

use unitarity to simulate the divergent part of 2-loop diagrams



▶ notation: \bar{n} **LO** − simulated 1-loop

 $\bar{n}\bar{n}$ **LO** – simulated 2-loop and simulated 1-loop

 \bar{n} **NLO** − simulated 2-loop and exact 1-loop

this will work very well for the processes with large K factors e.g.

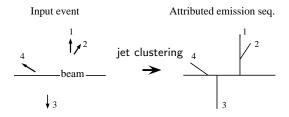
$$\sigma_{\bar{n}\mathsf{NLO}} = \sigma_{\mathsf{NNLO}} \left(1 + \mathcal{O}\left(\frac{\alpha_{\mathsf{s}}^2}{\mathsf{K}_{\mathsf{NNLO}}}\right) \right) \,, \quad \mathsf{K}_{\mathsf{NNLO}} \gtrsim \mathsf{K}_{\mathsf{NLO}} \gg 1$$

Input event

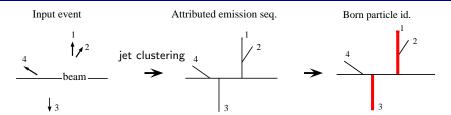
1

1

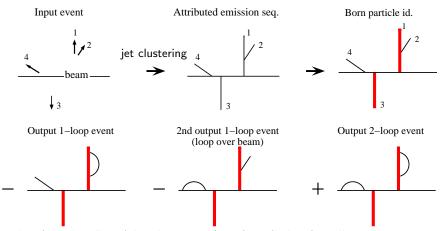
2



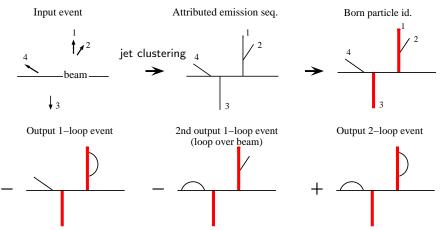
lacktriangledown jet clustering ij o k is reinterpreted as the splitting k o ij



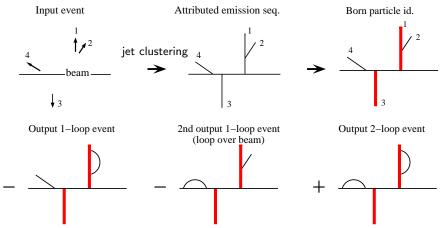
lacktriangledown jet clustering ij o k is reinterpreted as the splitting k o ij



- lacktriangle jet clustering $ij \to k$ is reinterpreted as the splitting $k \to ij$
- weight of an event $\sim (-1)^{\text{number of loops}}$



- ▶ jet clustering $ij \rightarrow k$ is reinterpreted as the splitting $k \rightarrow ij$
- weight of an event $\sim (-1)^{\text{number of loops}}$
- $ightharpoonup \Sigma$ all weights = 0 (unitarity) [Bloch, Nordsieck and Kinoshita, Lee, Nauenberg]



- ▶ jet clustering $ij \rightarrow k$ is reinterpreted as the splitting $k \rightarrow ij$
- weight of an event $\sim (-1)^{\text{number of loops}}$
- ightharpoonup all weights = 0 (unitarity) [Bloch, Nordsieck and Kinoshita, Lee, Nauenberg]
- beware: the loops above are just a shortcut notation!

 $E_{n,l}$ – input event with n final state particles and l loops

 U_l^b – operator producing event with b Born particles and l loops

 $U^b_orall$ — operator generating all necessary loop diagrams at given order

 $E_{n,l}$ – input event with n final state particles and l loops

 U_l^b — operator producing event with b Born particles and l loops

 $U_{orall}^{b}$ — operator generating all necessary loop diagrams at given order

 $E_{n,l}$ – input event with n final state particles and l loops

 U_l^b — operator producing event with b Born particles and l loops

 $U_{orall}^{b}$ — operator generating all necessary loop diagrams at given order

How to introduce exact loop contributions?

$$U_{\forall}^{b}(E_{n,0})$$

generate all diagrams from the tree level event

 $E_{n,l}$ – input event with n final state particles and l loops

 U_l^b – operator producing event with b Born particles and l loops

 $U_{orall}^{b}$ — operator generating all necessary loop diagrams at given order

$$U^b_{\forall}(E_{n,0}) + U^b_{\forall}(E_{n-1,1})$$

- generate all diagrams from the tree level event
- generate all diagrams from the 1-loop event

 $E_{n,l}$ – input event with n final state particles and l loops

 U_l^b - operator producing event with b Born particles and l loops

 $U^b_orall$ — operator generating all necessary loop diagrams at given order

$$U_{\forall}^{b}(E_{n,0}) + U_{\forall}^{b}(E_{n-1,1}) - U_{\forall}^{b}(U_{1}^{b}(E_{n,0}))$$

- generate all diagrams from the tree level event
- generate all diagrams from the 1-loop event
- ▶ remove all approximate diagrams from $U_{\forall}^b(E_{n,0})$ that have exact counterparts provided by $U_{\forall}^b(E_{n-1,1})$

 $E_{n,l}$ – input event with n final state particles and l loops

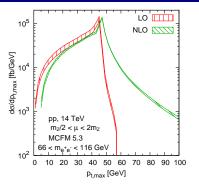
 U_I^b – operator producing event with b Born particles and I loops

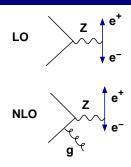
 $U^b_orall$ — operator generating all necessary loop diagrams at given order

$$U_{\forall}^{b}(E_{n,0}) + U_{\forall}^{b}(E_{n-1,1}) - U_{\forall}^{b}(U_{1}^{b}(E_{n,0}))$$

- generate all diagrams from the tree level event
- generate all diagrams from the 1-loop event
- remove all approximate diagrams from $U_{\forall}^{b}(E_{n,0})$ that have exact counterparts provided by $U_{\forall}^{b}(E_{n-1,1})$
- ▶ inclusion of exact loops helps reducing scale uncertainties
- straightforward generalization to arbitrary number of exact loops

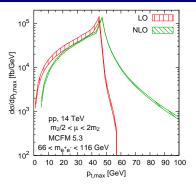
Validation

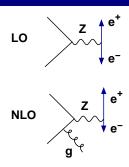




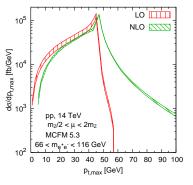
▶ giant K factor due to a boost caused by initial state radiation

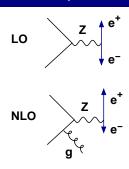
8 / 13





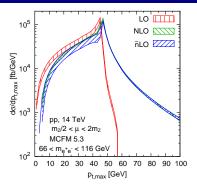
- giant K factor due to a boost caused by initial state radiation
- ▶ the agreement between NLO and \bar{n} LO may serve as a indication whether the method works for a given observable, $Z@\bar{n}$ LO = $Z@LO+LoopSim \circ (Z+j@LO)$

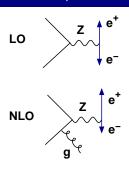




- giant K factor due to a boost caused by initial state radiation
- the agreement between NLO and \bar{n} LO may serve as a indication whether the method works for a given observable, $Z@\bar{n}LO = Z@LO + LoopSim \circ (Z + i@LO)$
- three regions of $p_{t,max}$:

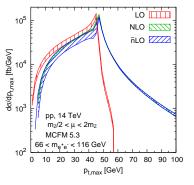
$$\lesssim \frac{1}{2}M_Z$$

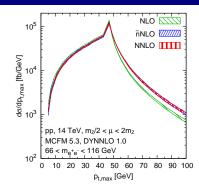




- giant K factor due to a boost caused by initial state radiation
- ▶ the agreement between NLO and \bar{n} LO may serve as a indication whether the method works for a given observable, $Z@\bar{n}$ LO = $Z@LO + LoopSim \circ (Z + j@LO)$

	•		•	,
•	three regions of $p_{t, \max}$:	$\lesssim \frac{1}{2}M_Z$	$[\frac{1}{2}M_Z, 58{ m GeV}]$	$>58\mathrm{GeV}$
	ōLO vs NLO	very good	excellent	perfect
		(not guaranteed)	(expected)	(expected)

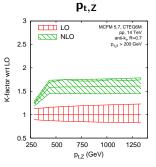


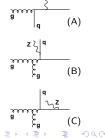


- ▶ giant K factor due to a boost caused by initial state radiation
- ▶ the agreement between NLO and \bar{n} LO may serve as a indication whether the method works for a given observable, $Z@\bar{n}$ LO = $Z@LO + LoopSim \circ (Z + j@LO)$
- three regions of $p_{t,\text{max}}$: $\lesssim \frac{1}{2} M_Z$ $\left[\frac{1}{2} M_Z, 58 \, \text{GeV}\right] > 58 \, \text{GeV}$ $\bar{n} \text{LO vs NLO}$ very good excellent perfect and $\bar{n} \text{NLO vs NNLO}$ (not guaranteed) (expected) (expected)

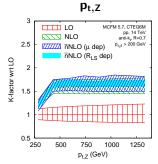
*n***NLO** predictions for LHC

Z+jet at $\bar{n}NLO = Z$ +j@NLO + LoopSimo(Z+2j@NLO_{only})

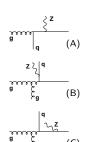




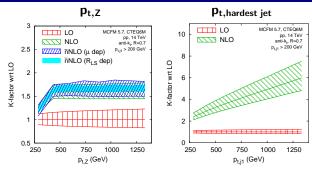
Z+jet at $\bar{n}NLO = Z+j@NLO + LoopSim \circ (Z+2j@NLO_{only})$



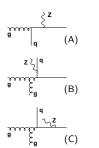
▶ $p_{t,Z}$: no correction; topology (A) dominant at high $p_{t,Z}$ (extra loops w.r.t. NLO do not change much)



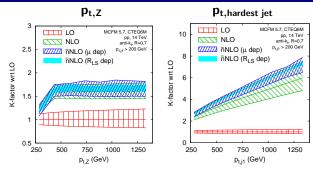
Z+jet at $\bar{n}NLO = Z$ +j@NLO + LoopSimo(Z+2j@NLO_{only})



▶ $p_{t,Z}$: no correction; topology (A) dominant at high $p_{t,Z}$ (extra loops w.r.t. NLO do not change much)

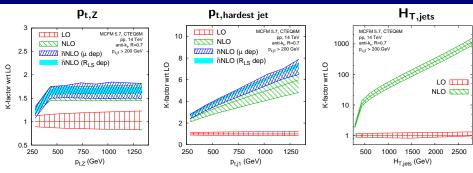


Z+jet at $\bar{n}NLO = Z+j@NLO + LoopSim \circ (Z+2j@NLO_{only})$



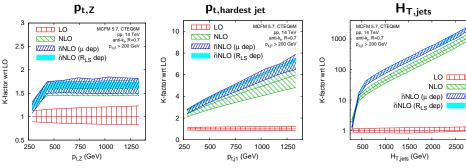
- p_{t,Z}: no correction; topology (A) dominant at high p_{t,Z} (extra loops w.r.t. NLO do not change much)
- ▶ p_{t,j}: small correction; n̄NLO is like NLO for the dominant (B) and (C) configurations and it behaves like healthy NLO

Z+jet at $\bar{n}NLO = Z+j@NLO + LoopSim \circ (Z+2j@NLO_{only})$



- ▶ $p_{t,Z}$: no correction; topology (A) dominant at high $p_{t,Z}$ (extra loops w.r.t. NLO do not change much)
- ▶ $p_{t,j}$: small correction; \bar{n} NLO is like NLO for the dominant (B) and (C) configurations and it behaves like healthy NLO

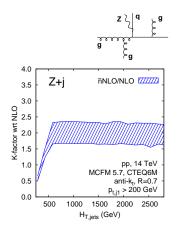
Z+jet at $\bar{n}NLO = Z$ +j@NLO + LoopSimo(Z+2j@NLO_{only})



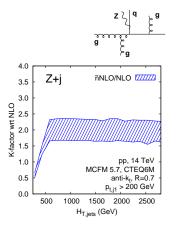
- ▶ $p_{t,Z}$: no correction; topology (A) dominant at high $p_{t,Z}$ (extra loops w.r.t. NLO do not change much)
- ▶ $p_{t,j}$: small correction; \bar{n} NLO is like NLO for the dominant (B) and (C) configurations and it behaves like healthy NLO
- ► H_{T, jets}: significant correction; K factor ~ 2; given that it is more like going from LO to NLO this may happen sometimes, especially for nontrivial observables like H_T; can we understand it here?

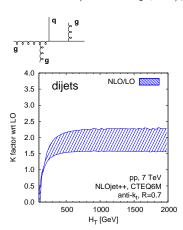
► Z+jet at NNLO like dijets at NLO (same topology, Z only provides the enhancement $\mathcal{O}(\alpha_{\text{EW}} \ln^2 p_{t,j1}/m_{\text{Z}})$)

► Z+jet at NNLO like dijets at NLO (same topology, Z only provides the enhancement $\mathcal{O}(\alpha_{\text{EW}} \ln^2 p_{t,j1}/m_{\text{Z}})$)



► Z+jet at NNLO like dijets at NLO (same topology, Z only provides the enhancement $\mathcal{O}(\alpha_{\text{EW}} \ln^2 p_{t,j1}/m_{\text{Z}})$)

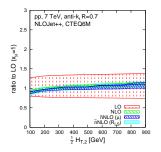




- \blacktriangleright H_T for dijets receives large contributions at NLO!
 - caused by appearance of the third jet from initial state radiation

Dijets at \bar{n} NLO

$H_{T,n} = \overline{\sum_{n \; ext{hardest}} \overline{p_{ ext{t}, ext{jet}}}}$

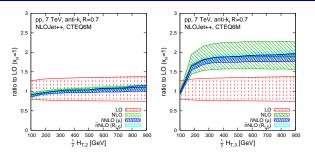


H_{T,2}: central value and scale uncertainties stay the same: adding NNLO corrections without proper finite part cannot improve the result

12 / 13

Dijets at $\bar{n}NLO$

$H_{T,n} = \sum_{n \text{ hardest jets}} p_{t, \text{jet}}$

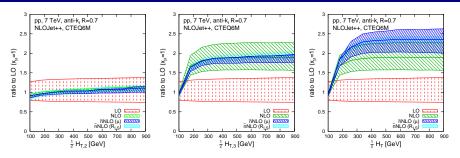


- H_{T,2}: central value and scale uncertainties stay the same: adding NNLO corrections without proper finite part cannot improve the result
- ▶ $H_{T,3}$ converges, significant reduction of scale uncertainty: the observable comes under control at $\bar{n}NLO$

12 / 13

Dijets at $\bar{n}NLO$

$H_{T,n} = \overline{\sum_{n \; ext{hardest}} \overline{\sum_{j ext{ets}} p_{t,j ext{et}}}}$



- ► H_{T,2}: central value and scale uncertainties stay the same: adding NNLO corrections without proper finite part cannot improve the result
- ▶ $H_{T,3}$ converges, significant reduction of scale uncertainty: the observable comes under control at $\bar{n}NLO$
- ▶ H_T does not converge: again caused by the initial state radiation, this time a second emission which shifts the distribution of H_T to higher values and causes no effect for the $H_{T,3}$ distribution

Summary

- several cases of observables with giant NLO K factor exist
- ▶ those large corrections arise due to appearance of new topologies at NLO
- we developed a method, called LoopSim, which allows one to obtain approximate NNLO corrections for such processes
- the method is based on unitarity and makes use of combining NLO results for different multiplicities
- ▶ we gave arguments why the method should produce meaningful results and we validated it against NNLO Drell-Yan and also NLO Z+j and NLO dijets
- we computed approximated NNLO corrections to Z+j and dijets at the LHC finding, depending on observable, either indication of convergence of the perturbative series or further corrections
- ▶ the latter has been understood and attributed to the initial state radiation

Outlook

ightharpoonup processes with W, multibosons, heavy quarks, ...

BACKUP SLIDES

The LoopSim method: some more details

For a given input E_n event with n final state particles the weights of all diagrams generated by LoopSim sum up to zero (unitarity)

$$\sum_{\text{all diagrams}} w_n = \sum_{\ell=0}^{\upsilon} (-1)^\ell \binom{\upsilon}{\ell} = 0 \,, \qquad \ell - \text{number of loops, } \upsilon - \text{maximal } \ell$$

The LoopSim method: some more details

For a given input E_n event with n final state particles the weights of all diagrams generated by LoopSim sum up to zero (unitarity)

$$\sum_{
m all\ diagrams} w_n = \sum_{\ell=0}^{\upsilon} (-1)^\ell inom{\upsilon}{\ell} = 0 \ , \qquad \ell - {
m number\ of\ loops,\ } arphi - {
m maximal\ } \ell$$

The principle of the method is simple. There is, however, a number of issues that need to be addressed to fully specify the procedure and make it usable:

The LoopSim method: some more details

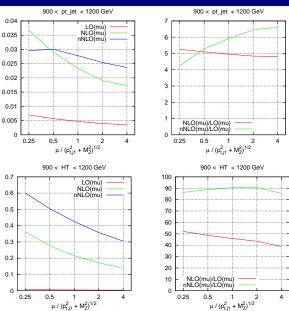
For a given input E_n event with n final state particles the weights of all diagrams generated by LoopSim sum up to zero (unitarity)

$$\sum_{\text{all diagrams}} w_n = \sum_{\ell=0}^{\upsilon} (-1)^\ell \binom{\upsilon}{\ell} = 0 \,, \qquad \ell - \text{number of loops, } \upsilon - \text{maximal } \ell$$

The principle of the method is simple. There is, however, a number of issues that need to be addressed to fully specify the procedure and make it usable:

- ▶ infrared and collinear safety
- conservation of four-momentum
- choice of jet definition (algorithm, value of R)
- treatment of flavour (e.g. for processes with vector bosons)
 - Z boson can be emitted only from quarks and never itself emits
- extension to input events with exact loops

Scale dependence: Z + jet

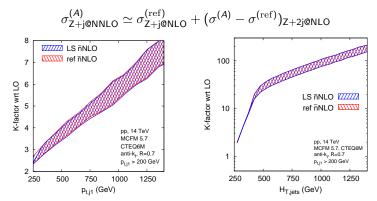


Reference-observable method

Take a reference observable identical at LO to the observable A

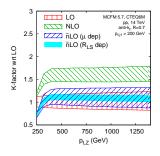
$$\begin{split} \sigma_{\text{Z+j@NNLO}}^{(A)} &= \sigma_{\text{Z+j@NNLO}}^{(\text{ref})} + (\sigma^{(A)} - \sigma^{(\text{ref})})_{\text{Z+j@NNLO}} \\ &= \sigma_{\text{Z+j@NNLO}}^{(\text{ref})} + (\sigma^{(A)} - \sigma^{(\text{ref})})_{\text{Z+2j@NLO}} \end{split}$$

If the reference observable converges well



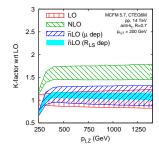
 $ightharpoonup Z + j@\overline{n}LO = Z + j@LO + LoopSim \circ (Z + 2j@LO)$

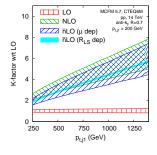
 $ightharpoonup Z + j@\overline{n}LO = Z + j@LO + LoopSim \circ (Z + 2j@LO)$

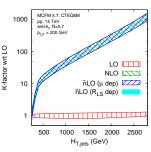


- \triangleright $p_{t,Z}$ (lack of large K-factor):
 - finite loop contributions matter
 - correctly reproduced dip towards p_t = 200 GeV

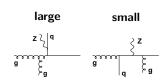
 $ightharpoonup Z + j@\overline{n}LO = Z + j@LO + LoopSim \circ (Z + 2j@LO)$



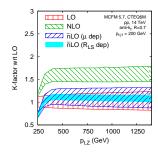


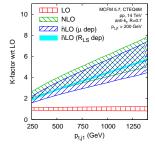


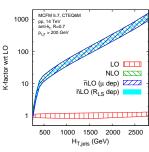
- \triangleright $p_{t,Z}$ (lack of large K-factor):
 - finite loop contributions matter
 - correctly reproduced dip towards $p_t = 200 \text{ GeV}$
- ▶ $p_{t,j}$, $H_{T,jets}$ (giant K-factor):
 - ightharpoonup very good agreement between \bar{n} LO and NLO



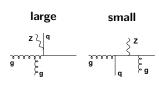
 $ightharpoonup Z+j@IO+LoopSim\circ(Z+2j@IO)$



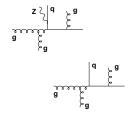




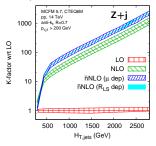
- \triangleright $p_{t,Z}$ (lack of large K-factor):
 - ► finite loop contributions matter
 - correctly reproduced dip towards $p_t = 200 \text{ GeV}$
- \triangleright $p_{t,j}$, $H_{T,jets}$ (giant K-factor):
 - ightharpoonup very good agreement between $\bar{n} LO$ and NLO
- small R uncertainties driven only by subleading diagrams

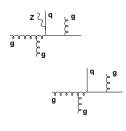


▶ Z+jet at NNLO like dijets at NLO (same topology, Z only provides the enhancement $\mathcal{O}(\alpha_s \ln^2 p_{t,j1}/m_{\rm Z})$)

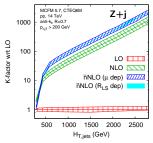


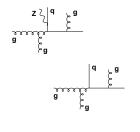
► Z+jet at NNLO like dijets at NLO (same topology, Z only provides the enhancement $\mathcal{O}(\alpha_s \ln^2 p_{t,j1}/m_Z)$)

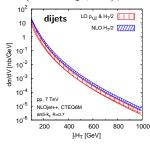




► Z+jet at NNLO like dijets at NLO (same topology, Z only provides the enhancement $\mathcal{O}(\alpha_s \ln^2 p_{t,j1}/m_Z)$)

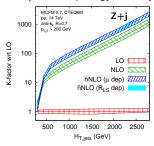


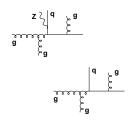


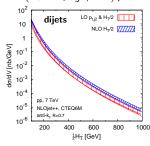


- H_T for dijets receives large contributions at NLO!
 - caused by appearance of the third jet from initial state radiation

▶ Z+jet at NNLO like dijets at NLO (same topology, Z only provides the enhancement $\mathcal{O}(\alpha_s \ln^2 p_{t,j1}/m_Z)$)

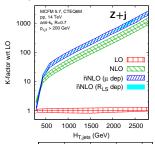


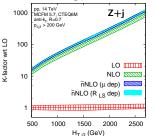


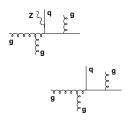


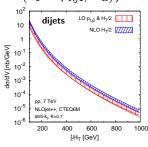
- \blacktriangleright H_T for dijets receives large contributions at NLO!
 - caused by appearance of the third jet from initial state radiation
- ▶ if the same is valid for Z + j we should see only small correction for $H_{T,j2} = \sum_{i=1}^{2} p_{t,ji}$

▶ Z+jet at NNLO like dijets at NLO (same topology, Z only provides the enhancement $\mathcal{O}(\alpha_s \ln^2 p_{t,j1}/m_{\rm Z})$)









- \blacktriangleright H_T for dijets receives large contributions at NLO!
 - caused by appearance of the third jet from initial state radiation
- ▶ if the same is valid for Z + j we should see only small correction for $H_{T,j2} = \sum_{i=1}^{2} p_{t,j_i}$
 - and indeed it is small!