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The problem of giant K factors

◮ Z+j at the LHC
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What do we have and what is missing?

◮ The large K factor for the Z+jet comes from the new “dijet type” topologies
that appear at NLO Z
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◮ The large K factor for the Z+jet comes from the new “dijet type” topologies
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◮ though formally NLO diagrams for Z+jet, these are in fact leading
contributions to pt,j1 and HT spectra

◮ this raises doubts about the accuracy of these predictions

◮ need for subleading contributions for Z+jet, in this case NNLO
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◮ though formally NLO diagrams for Z+jet, these are in fact leading
contributions to pt,j1 and HT spectra

◮ this raises doubts about the accuracy of these predictions

◮ need for subleading contributions for Z+jet, in this case NNLO

Z+j at NNLO = Z+3j tree + Z+2j 1-loop + Z+j 2-loop

︸ ︷︷ ︸

Z+2j at NLO
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◮ The large K factor for the Z+jet comes from the new “dijet type” topologies
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◮ though formally NLO diagrams for Z+jet, these are in fact leading
contributions to pt,j1 and HT spectra

◮ this raises doubts about the accuracy of these predictions

◮ need for subleading contributions for Z+jet, in this case NNLO

Z+j at NNLO = Z+3j tree + Z+2j 1-loop + Z+j 2-loop

︸ ︷︷ ︸

Z+2j at NLO

◮ 2-loop part

◮ we need it to cancel IR and collinear divergences from Z+2j at NLO result
◮ it will have the topology of Z+j at LO so it will not contribute much to the

cross sections with giant K-factor
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The basic idea

How to cancel the infrared and collinear singularities?
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The basic idea

How to cancel the infrared and collinear singularities?

◮ use unitarity to simulate the divergent part of 2-loop diagrams

LoopSim procedure

input:
event with n final

state particles

output:
all n − k final state

particle events
(equivalently all k-loop events)

LoopSim
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The basic idea

How to cancel the infrared and collinear singularities?

◮ use unitarity to simulate the divergent part of 2-loop diagrams

LoopSim procedure

input:
event with n final

state particles

output:
all n − k final state

particle events
(equivalently all k-loop events)

LoopSim

◮ notation: n̄LO – simulated 1-loop
n̄n̄LO – simulated 2-loop and simulated 1-loop

n̄NLO – simulated 2-loop and exact 1-loop

◮ this will work very well for the processes with large K factors e.g.

σn̄NLO = σNNLO
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s
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, KNNLO & KNLO ≫ 1
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The LoopSim method: n̄LO, n̄n̄LO etc.
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The LoopSim method: n̄LO, n̄n̄LO etc.

◮ jet clustering ij → k is reinterpreted as the splitting k → ij

◮ weight of an event ∼ (−1)number of loops

◮

∑
all weights = 0 (unitarity) [Bloch, Nordsieck and Kinoshita, Lee, Nauenberg]

◮ beware: the loops above are just a shortcut notation!
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Including exact loops

En,l – input event with n final state particles and l loops

Ub
l – operator producing event with b Born particles and l loops

Ub
∀

– operator generating all necessary loop diagrams at given order
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En,l – input event with n final state particles and l loops

Ub
l – operator producing event with b Born particles and l loops

Ub
∀

– operator generating all necessary loop diagrams at given order

How to introduce exact loop contributions?

Ub
∀
(En,0) + Ub

∀
(En−1,1) − Ub

∀
(Ub

1 (En,0))

◮ generate all diagrams from the tree level event

◮ generate all diagrams from the 1-loop event

◮ remove all approximate diagrams from Ub
∀
(En,0) that have exact

counterparts provided by Ub
∀
(En−1,1)

◮ inclusion of exact loops helps reducing scale uncertainties

◮ straightforward generalization to arbitrary number of exact loops
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Validation
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Drell-Yan at NNLO: spectrum of harder lepton
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◮ giant K factor due to a boost caused by initial state radiation
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◮ the agreement between NLO and n̄LO may serve as a indication whether
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◮ giant K factor due to a boost caused by initial state radiation

◮ the agreement between NLO and n̄LO may serve as a indication whether
the method works for a given observable, Z@n̄LO = Z@LO+LoopSim ◦ (Z+j@LO)

◮ three regions of pt,max : . 1
2MZ [ 1

2MZ , 58 GeV] > 58 GeV

n̄LO vs NLO very good excellent perfect
and n̄NLO vs NNLO (not guaranteed) (expected) (expected)
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n̄NLO predictions for LHC
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Z+jet at n̄NLO = Z+j@NLO + LoopSim◦(Z+2j@NLOonly)
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Z+jet at n̄NLO = Z+j@NLO + LoopSim◦(Z+2j@NLOonly)
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Z+jet at n̄NLO = Z+j@NLO + LoopSim◦(Z+2j@NLOonly)
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HT type observables at n̄NLO for Z+jet and for dijets

◮ Z+jet at NNLO like dijets at NLO
(same topology, Z only provides the enhancement O

(
αEW ln2 pt,j1/mZ

)
)

Z q

g

g

g q

g

g

g

Sebastian Sapeta (LPTHE, Paris) Simulating NNLO QCD corrections for processes with giant K factors 11 / 13



HT type observables at n̄NLO for Z+jet and for dijets

◮ Z+jet at NNLO like dijets at NLO
(same topology, Z only provides the enhancement O

(
αEW ln2 pt,j1/mZ

)
)

Z q

g

g

g q

g

g

g

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 500  1000  1500  2000  2500

K
-f

ac
to

r 
w

rt
 N

LO

HT,jets (GeV)

MCFM 5.7, CTEQ6M
pp, 14 TeV

anti-kt, R=0.7
pt,j1 > 200 GeV

Z+j –nNLO/NLO

Sebastian Sapeta (LPTHE, Paris) Simulating NNLO QCD corrections for processes with giant K factors 11 / 13



HT type observables at n̄NLO for Z+jet and for dijets

◮ Z+jet at NNLO like dijets at NLO
(same topology, Z only provides the enhancement O

(
αEW ln2 pt,j1/mZ

)
)

Z q

g

g

g q

g

g

g

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 500  1000  1500  2000  2500

K
-f

ac
to

r 
w

rt
 N

LO

HT,jets (GeV)

MCFM 5.7, CTEQ6M
pp, 14 TeV

anti-kt, R=0.7
pt,j1 > 200 GeV

Z+j –nNLO/NLO

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 500  1000  1500  2000
K

 fa
ct

or
 w

rt
 L

O

HT [GeV]

NLOjet++, CTEQ6M
anti-kt, R=0.7

pp, 7 TeV

dijets NLO/LO

◮ HT for dijets receives large contributions at NLO!
◮ caused by appearance of the third jet from initial state radiation
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Dijets at n̄NLO HT ,n =
∑

n hardest jets pt,jet
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◮ HT,2: central value and scale uncertainties stay the same: adding
NNLO corrections without proper finite part cannot improve the result
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◮ HT,2: central value and scale uncertainties stay the same: adding
NNLO corrections without proper finite part cannot improve the result

◮ HT,3 converges, significant reduction of scale uncertainty: the
observable comes under control at n̄NLO
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◮ HT,2: central value and scale uncertainties stay the same: adding
NNLO corrections without proper finite part cannot improve the result

◮ HT,3 converges, significant reduction of scale uncertainty: the
observable comes under control at n̄NLO

◮ HT does not converge: again caused by the initial state radiation, this
time a second emission which shifts the distribution of HT to higher values
and causes no effect for the HT ,3 distribution
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Summary

◮ several cases of observables with giant NLO K factor exist

◮ those large corrections arise due to appearance of new topologies at NLO

◮ we developed a method, called LoopSim, which allows one to obtain
approximate NNLO corrections for such processes

◮ the method is based on unitarity and makes use of combining NLO results
for different multiplicities

◮ we gave arguments why the method should produce meaningful results and
we validated it against NNLO Drell-Yan and also NLO Z+j and NLO dijets

◮ we computed approximated NNLO corrections to Z+j and dijets at the LHC
finding, depending on observable, either indication of convergence of the
perturbative series or further corrections

◮ the latter has been understood and attributed to the initial state radiation

Outlook

◮ processes with W , multibosons, heavy quarks, . . .
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BACKUP SLIDES
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The LoopSim method: some more details

For a given input En event with n final state particles the weights of all diagrams
generated by LoopSim sum up to zero (unitarity)

∑

all diagrams

wn =

υ∑

ℓ=0

(−1)ℓ

(
υ

ℓ

)

= 0 , ℓ − number of loops, υ − maximal ℓ
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The principle of the method is simple. There is, however, a number of issues that
need to be addressed to fully specify the procedure and make it usable:
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all diagrams

wn =

υ∑

ℓ=0

(−1)ℓ

(
υ

ℓ

)

= 0 , ℓ − number of loops, υ − maximal ℓ

The principle of the method is simple. There is, however, a number of issues that
need to be addressed to fully specify the procedure and make it usable:

◮ infrared and collinear safety

◮ conservation of four-momentum

◮ choice of jet definition (algorithm, value of R)

◮ treatment of flavour (e.g. for processes with vector bosons)
◮ Z boson can be emitted only from quarks and never itself emits

◮ extension to input events with exact loops
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Scale dependence: Z + jet
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Reference-observable method
Take a reference observable identical at LO to the observable A

σ
(A)
Z+j@NNLO = σ

(ref)
Z+j@NNLO + (σ(A)

− σ(ref))Z+j@NNLO

= σ
(ref)
Z+j@NNLO + (σ(A)

− σ(ref))Z+2j@NLO

If the reference observable converges well

σ
(A)
Z+j@NNLO ≃ σ

(ref)
Z+j@NLO + (σ(A)

− σ(ref))Z+2j@NLO
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Z+jet at NLO

◮ Z + j@n̄LO = Z + j@LO + LoopSim ◦ (Z + 2j@LO)
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Z+jet at NLO

◮ Z + j@n̄LO = Z + j@LO + LoopSim ◦ (Z + 2j@LO)
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◮ pt,Z (lack of large K-factor):
◮ finite loop contributions matter
◮ correctly reproduced dip towards pt = 200 GeV
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◮ pt,Z (lack of large K-factor):
◮ finite loop contributions matter
◮ correctly reproduced dip towards pt = 200 GeV

◮ pt,j , HT ,jets (giant K-factor):
◮ very good agreement between n̄LO and NLO
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◮ small R uncertainties – driven only by subleading diagrams
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HT type observables at n̄NLO for Z+jet and for dijets

◮ Z+jet at NNLO like dijets at NLO
(same topology, Z only provides the enhancement O

(
αs ln2 pt,j1/mZ

)
)
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◮ HT for dijets receives large contributions at NLO!
◮ caused by appearance of the third jet from

initial state radiation
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◮ HT for dijets receives large contributions at NLO!
◮ caused by appearance of the third jet from

initial state radiation

◮ if the same is valid for Z + j we should see only

small correction for HT ,j2 =
∑2

i=1 pt,ji
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