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The problem of giant K factors

» Z+j at the LHC
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What do we have and what is missing?

» The large K factor for the Z+jet comes from the new “dijet type” topologies
that appear at NLO
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What do we have and what is missing?

» The large K factor for the Z+jet comes from the new “dijet type” topologies
that appear at NLO

» though formally NLO diagrams for Z+jet, these are in fact leading
contributions to p; j1 and Ht spectra

> this raises doubts about the accuracy of these predictions
» need for subleading contributions for Z+jet, in this case NNLO
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What do we have and what is missing?

» The large K factor for the Z+jet comes from the new “dijet type” topologies
that appear at NLO

» though formally NLO diagrams for Z+jet, these are in fact leading
contributions to p;j1 and Ht spectra

> this raises doubts about the accuracy of these predictions
» need for subleading contributions for Z+jet, in this case NNLO

Z+jat NNLO = Z+3jtree + Z+2j1l-loop + Z+j2-loop

Z+2j at NLO
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What do we have and what is missing?

» The large K factor for the Z+jet comes from the new “dijet type” topologies
that appear at NLO

» though formally NLO diagrams for Z+jet, these are in fact leading
contributions to p;j1 and Ht spectra

> this raises doubts about the accuracy of these predictions
» need for subleading contributions for Z+jet, in this case NNLO

Z+jat NNLO = Z+3jtree + Z+2j1l-loop + Z+j2-loop

Z+2j at NLO

» 2-loop part

» we need it to cancel IR and collinear divergences from Z+2j at NLO result
» it will have the topology of Z+j at LO so it will not contribute much to the
cross sections with giant K-factor
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The basic idea

How to cancel the infrared and collinear singularities?
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How to cancel the infrared and collinear singularities?

» use unitarity to simulate the divergent part of 2-loop diagrams
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The basic idea

How to cancel the infrared and collinear singularities?

» use unitarity to simulate the divergent part of 2-loop diagrams

LoopSim procedure

output:
all n — k final state
particle events
(equivalently all k-loop events)

input: LoopSim
event with n final
state particles
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The basic idea

How to cancel the infrared and collinear singularities?

» use unitarity to simulate the divergent part of 2-loop diagrams

LoopSim procedure

output:
all n — k final state
particle events
(equivalently all k-loop events)

input: LoopSim
event with n final
state particles

> notation: ALO - simulated 1-loop
nnLO simulated 2-loop and simulated 1-loop

nNLO

simulated 2-loop and exact 1-loop
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The basic idea

How to cancel the infrared and collinear singularities?

» use unitarity to simulate the divergent part of 2-loop diagrams

LoopSim procedure

output:
all n — k final state
particle events
(equivalently all k-loop events)

input: LoopSim
event with n final
state particles

> notation: ALO - simulated 1-loop
nnLO - simulated 2-loop and simulated 1-loop
ANLO - simulated 2-loop and exact 1-loop

» this will work very well for the processes with large K factors e.g.

2

as
OANLO = ONNLO (1+O(K )) . Knneo 2 Ko > 1
NNLO
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The LoopSim method: nLO, nnLO etc.

Input event

/2

beam——

4
N

E
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The LoopSim m d: nLO, nnLO etc.

Input event Attributed emission seq.
1 1
b 42 . . 2
4 / jet clustering 4
\—beam_ >

E 3

> jet clustering ijj — k is reinterpreted as the splitting k — ij
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The LoopSim m d: nLO, nnLO etc.

Input event Attributed emission seq. Born particle id.
1 1 ! )
T 2 . . 2
4 / jet clustering 4 4
N beam— > >
ba 3 3

> jet clustering ijj — k is reinterpreted as the splitting k — ij
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The LoopSim method: nLO, nnLO etc.

Input event Attributed emission seq. Born particle id.
1 1 ! )
b 42 . . 2
4 / jet clustering 4 4
N beam— > > |
b3 3 3
Output 1-loop event 2nd output 1-loop event Output 2—-loop event

(loop over beam)

D

— _/\I/ +

> jet clustering ijj — k is reinterpreted as the splitting k — ij

> weight of an event ~ (—1)number of loops
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The LoopSim m d: nLO, nnLO etc.

Input event Attributed emission seq. Born particle id.
1 1 ! )
b 42 . . 2
4 / jet clustering 4 4
N beam— > > |
b3 3 3
Output 1-loop event 2nd output 1-loop event Output 2—-loop event

(loop over beam)

b
| ]

> jet clustering ijj — k is reinterpreted as the splitting k — ij
> weight of an event ~ (—1)number of loops

» 3 all weights = 0 (unitarity) [Bloch, Nordsieck and Kinoshita, Lee, Nauenberg]
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The LoopSim m d: nLO, nnLO etc.

Input event Attributed emission seq. Born particle id.
1 1 ! )
b 42 . . 2
4 / jet clustering 4 4
N beam— > > |
b3 3 3
Output 1-loop event 2nd output 1-loop event Output 2—-loop event

(loop over beam)

D

— _/\I/ +

> jet clustering ijj — k is reinterpreted as the splitting k — ij

> weight of an event ~ (—1)number of loops

» 3 all weights = 0 (unitarity) [Bloch, Nordsieck and Kinoshita, Lee, Nauenberg]
> beware: the loops above are just a shortcut notation!
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Including exact loops

E,; — input event with n final state particles and / loops
U,b — operator producing event with b Born particles and / loops
U\S — operator generating all necessary loop diagrams at given order
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Including exact loops

E,; — input event with n final state particles and / loops
U,b — operator producing event with b Born particles and / loops
U\f — operator generating all necessary loop diagrams at given order

How to introduce exact loop contributions?
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Including exact loops

E,; — input event with n final state particles and / loops
U,b — operator producing event with b Born particles and / loops
U\f — operator generating all necessary loop diagrams at given order
How to introduce exact loop contributions?
Ug(En,O)

» generate all diagrams from the tree level event
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Including exact loops

E,; — input event with n final state particles and / loops
U,b — operator producing event with b Born particles and / loops
U\f — operator generating all necessary loop diagrams at given order

How to introduce exact loop contributions?

Ug(Eno) + Ug(En-11)
» generate all diagrams from the tree level event

» generate all diagrams from the 1-loop event
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Including exact loops

E,; — input event with n final state particles and / loops
U,b — operator producing event with b Born particles and / loops
U\f — operator generating all necessary loop diagrams at given order
How to introduce exact loop contributions?
U(Enp) + U2(Enc11) — UR(UP(Eno))

» generate all diagrams from the tree level event
» generate all diagrams from the 1-loop event

» remove all approximate diagrams from US(E, o) that have exact
counterparts provided by U\f(E,,_l,l)
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Including exact loops

E,; — input event with n final state particles and / loops
U,b — operator producing event with b Born particles and / loops
U\f — operator generating all necessary loop diagrams at given order
How to introduce exact loop contributions?
U(Enp) + U2(Enc11) — UR(UP(Eno))

» generate all diagrams from the tree level event
» generate all diagrams from the 1-loop event

» remove all approximate diagrams from US(E, o) that have exact
counterparts provided by U\f(E,,_l,l)

» inclusion of exact loops helps reducing scale uncertainties

v

straightforward generalization to arbitrary number of exact loops
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Validation
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Drell-Yan at NNLO: spectrum of harder lepton
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» giant K factor due to a boost caused by initial state radiation

Sebastian Sapeta (LPTHE, Paris) Simulating NNLO QCD corrections for processes with giant K factors 8 /13



Drell-Yan at NNLO: spectrum of harder lepton
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» giant K factor due to a boost caused by initial state radiation

» the agreement between NLO and ALO may serve as a indication whether
the method works for a given observable, Z@ALO = Z@LO+LoopSim o (Z+,@LO)
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Drell-Yan at NNLO: spectrum of harder lepton
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» giant K factor due to a boost caused by initial state radiation

» the agreement between NLO and ALO may serve as a indication whether
the method works for a given observable, Z@ALO = Z@LO+LoopSim o (Z+,@LO)

> three regions of pr max : < %l\/lz [%/\/lz7 58 GeV]
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Drell-Yan at NNLO: spectrum of harder lepton
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» giant K factor due to a boost caused by initial state radiation

» the agreement between NLO and ALO may serve as a indication whether
the method works for a given observable, Z@ALO = Z@LO+LoopSim o (Z+,@LO)

» three regions of p; max : S 3Mz [1Mz, 58 GeV] > 58GeV
nLO vs NLO very good excellent perfect
(not guaranteed) (expected) (expected)
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rell-Yan at NNLO: spectrum of harder lepton
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» giant K factor due to a boost caused by initial state radiation

» the agreement between NLO and ALO may serve as a indication whether
the method works for a given observable, Z@ALO = Z@LO+LoopSim o (Z+,@LO)

» three regions of p; max : S 3Mz [1Mz, 58 GeV] > 58GeV
nLO vs NLO very good excellent perfect
and INLO vs NNLO (not guaranteed) (expected) (expected)
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nNLO predictions for LHC
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Z-+jet at ANLO = Z+j@NLO + LoopSimo(Z+2j@NLO,p)
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Z-+jet at ANLO = Z+j@NLO + LoopSimo(Z+2j@NLO,p)

K-factor wrt LO
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> p: z: no correction; topology (A) dominant at high p; 7
(extra loops w.r.t. NLO do not change much)
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Z-+jet at ANLO = Z+j@NLO + LoopSimo(Z+2j@NLO,p)

Pt,z
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K-factor wrt LO

K-factor wrt LO
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> p: z: no correction; topology (A) dominant at high p; 7

(extra loops w.r.t. NLO do not change much)
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Z-+jet at ANLO = Z+j@NLO + LoopSimo(Z+2j@NLO,p)

K-factor wrt LO

15
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> p: z: no correction; topology (A) dominant at high p; 7

(extra loops w.r.t. NLO do not change much)
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> p; ;o small correction; AINLO is like NLO for the dominant
(B) and (C) configurations and it behaves like healthy NLO
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Z-+jet at ANLO = Z+j@NLO + LoopSimo(Z+2j@NLO,p)
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> p: z: no correction; topology (A) dominant at high p; 7
(extra loops w.r.t. NLO do not change much)

> p; ;o small correction; AINLO is like NLO for the dominant
(B) and (C) configurations and it behaves like healthy NLO
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Z-+jet at ANLO = Z+j@NLO + LoopSimo(Z+2j@NLO,p)

K-factor wrt LO

Pt,z Pt,hardest jet
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> p: z: no correction; topology (A) dominant at high p; 7
(extra loops w.r.t. NLO do not change much)

> p; ;o small correction; AINLO is like NLO for the dominant
(B) and (C) configurations and it behaves like healthy NLO

> H7T jets: significant correction; K factor ~ 2; given that it is
more like going from LO to NLO this may happen

sometimes, especially for nontrivial observables like Hr;
can we understand it here?
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Ht type observables at ANLO for Z+jet and for dijets

» Z+jet at NNLO like dijets at NLO
(same topology, Z only provides the enhancement O (agw In® py.j1/mz))

z¢ |9 g a g
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Ht type observables at ANLO for Z+jet and for dijets

» Z+jet at NNLO like dijets at NLO
(same topology, Z only provides the enhancement O (agw In® py.j1/mz))

»
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Ht type observables at ANLO for Z+jet and for dijets

» Z+jet at NNLO like dijets at NLO
(same topology, Z only provides the enhancement O (agw In® py.j1/mz))
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» Hy for dijets receives large contributions at NLO!
» caused by appearance of the third jet from initial state radiation
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Dijets at ANLO HTJ? — Zn hardest jets Pt jet
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» Ht: central value and scale uncertainties stay the same: adding
NNLO corrections without proper finite part cannot improve the result
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Dijets at ANLO

T T T T T
pp, 7 TeV, anti-k, R=0.7
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— Zn hardest jets Pt jet

> Hrt2: central value and scale uncertainties stay the same: adding
NNLO corrections without proper finite part cannot improve the result

» Hr 3 converges, significant reduction of scale uncertainty: the
observable comes under control at ANLO
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Dijets at ANLO

T T T T T
pp, 7 TeV, anti-k, R=0.7
NLOJet++, CTEQ6M
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> Hrt2: central value and scale uncertainties stay the same: adding
NNLO corrections without proper finite part cannot improve the result

» Hr 3 converges, significant reduction of scale uncertainty: the
observable comes under control at ANLO

» Ht does not converge: again caused by the initial state radiation, this
time a second emission which shifts the distribution of Hr to higher values
and causes no effect for the Hr 3 distribution
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» several cases of observables with giant NLO K factor exist

» those large corrections arise due to appearance of new topologies at NLO

» we developed a method, called LoopSim, which allows one to obtain

>

approximate NNLO corrections for such processes

the method is based on unitarity and makes use of combining NLO results
for different multiplicities

we gave arguments why the method should produce meaningful results and
we validated it against NNLO Drell-Yan and also NLO Z+j and NLO dijets

we computed approximated NNLO corrections to Z+j and dijets at the LHC
finding, depending on observable, either indication of convergence of the
perturbative series or further corrections

the latter has been understood and attributed to the initial state radiation

Outlook

>

processes with W, multibosons, heavy quarks, ...

Sebastian Sapeta (LPTHE, Paris) Simulating NNLO QCD corrections for processes with giant K factors 13 /13



BACKUP SLIDES

Sebastian Sapeta (LPTHE, Paris) Simulating NNLO QCD corrections for processes with giant K factors



The LoopSim method: some more details

For a given input E, event with n final state particles the weights of all diagrams
generated by LoopSim sum up to zero (unitarity)

Z w, = Z(—l)e (;) =0, ¢ — number of loops, v — maximal ¢
=0

all diagrams
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generated by LoopSim sum up to zero (unitarity)

Z w, = Z(—l)e (;) =0, ¢ — number of loops, v — maximal ¢
=0

all diagrams

The principle of the method is simple. There is, however, a number of issues that
need to be addressed to fully specify the procedure and make it usable:
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The LoopSim m

For a given input E, event with n final state particles the weights of all diagrams
generated by LoopSim sum up to zero (unitarity)

Z w, = Z(—l)e (;) =0, ¢ — number of loops, v — maximal ¢
=0

all diagrams
The principle of the method is simple. There is, however, a number of issues that
need to be addressed to fully specify the procedure and make it usable:
infrared and collinear safety
conservation of four-momentum

choice of jet definition (algorithm, value of R)

vV VY VY

treatment of flavour (e.g. for processes with vector bosons)
» Z boson can be emitted only from quarks and never itself emits

» extension to input events with exact loops
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Scale dependence: Z + jet

900 < pt_jet <1200 GeV 900 < pt_jet <1200 GeV
0.04 T T 7
LO(mu) ———
NLO(mu) |
0.035 Lo 6
0.03 i -
0.025
4
0.02
3
0.015
0.01 2
0.005 T : NLO(mu)/LO(mu) ———
‘nNLO(mL‘J)ILO(mu) .
[¢]
0.25 0.5 1 2 4 0.25 0.5 1 2 4
ni (P + MM w/ (pEy + M3
900 < HT <1200 GeV 900 < HT <1200 GeV
0.7 T T 100
LO(mu) ———
0.6 NLO(mu) 90
6 - NLO| —
ol (mu) 80
05 70
0.4 60
e
03 40
0.2 30
20
0.1
10 F  NLO(MU)YLO(mu) ——
P ‘nNLO(ml‘J)/LO(mu) )
0.25 0.5 1 2 4 0.25 0.5 1 2 4

2 2,112

I (P + M2) D

w/ (Dsll +Mgz)
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Reference-observable method

Take a reference observable identical at LO to the observable A

(A) (ref) (A) (ref)y_ .
071ienNLo = 9z1jennto T (02 — o)z jennLo

(ref) A ref
O7z4jennLo T (e — oDz ento
If the reference observable converges well

(A) ~ o (ref) (A) (ref) )
07 4+jeNNLO == 07 jenLo T (o' — ")z 25enL0

(7777770 LS ANLO
s ref ANLO

LS ANLO 277777}
10+ / ref ANLO 4

K-factor wrt LO
o
K-factor wrt LO

4 pp, 14 Tev
MCFM 5.7 PP, 14 Tev

3 CTEQ6M | MCFM 5.7, CTEQ6M
antl-k1, R=0.7 1+ anti-k, R=0.7 4
Pyjy > 200 GeV Pij1 > 200 GeV

2 . . . . . . \ .

250 500 750 1000 1250 250 500 750 1000 1250
pj1 (GeV) Hr jets (GeV)
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Z+jet at NLO

> Z + jOnLO = Z 4 jOLO + LoopSim o (Z + 2j@LO)
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Z+jet at NLO

> Z + jOnLO = Z 4 jOLO + LoopSim o (Z + 2j@LO)

3 T T T T
T11 LO MCFM 5.7, CTEQ6M
pp, 14 Tev
== NLO anti-k, R=0.7

251 ALO (dep) ~ Pu”?0C
NLO (R s dep)

N

=
o

K-factor wrt LO

S f

05 . . . .
250 500 750 1000 1250
Pz (GeV)

[

> p¢ 7z (lack of large K-factor):

> finite loop contributions matter
» correctly reproduced dip towards p; = 200 GeV
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Z+jet at NLO

> Z + jOnLO = Z 4 jOLO + LoopSim o (Z + 2j@LO)

3 T T T T
T11 LO MCFM 5.7, CTEQ6M
pp, 14 Tev
== NLO anti-k, R=0.7

P2 > 200 GeV.

251 ALO (u dep)
NLO (R s dep)

15/

, ;7 5 MW#

K-factor wrt LO

[

05 . . . .
250 500 750 1000 1250

Pz (GeV)

K-factor wrt LO

MCFM 5.7, CTEQSM

TT0 Lo

10} g
=== NLO ante, Aot
. [ZZZ1 fLO (ndep) ~ Pu”2%0%

ALO (R g dep)

MCFM 5.7, CTEQSM

1000 t pp, 14 Tev
antik, R=0.7
Py > 200 GeV
100 9

LO I

NLO =577
TLO (u dep) 224 4
nLO (R g dep)

K-factor wrt LO

> p¢ 7z (lack of large K-factor):
» finite loop contributions matter

» correctly reproduced dip towards p; = 200 GeV

250 500 750 1000 1250 500 1000 1500 2000 2500
P (GeV) Hr jets (GeV)
large small

> prj, HT jets (giant K-factor):
» very good agreement between nLO and NLO
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Z+jet at NLO

> Z + jOnLO = Z 4 jOLO + LoopSim o (Z + 2j@LO)

TTT7 Lo MCFM 5.7, CTEQSM | IO Lo MCFM 5.7, CTEQGM | 1000 | MCFM S, CTEQEM
== no A 7 oo AT AT
251 ALO (wdep)  Pn>20CeV . ZZZ1 ALO (udep) P20V Pujy > 200 GeV
A [ ALO (R 3
9 ALO (R dep) 9 nLO (R s dep) 9 100l 1
IS 2 © z
H B o s 3 LO 1O
5 D RN N 5 g NLO =]
& 15 s N\ NN »‘_; ;'.‘ 10 ALO (u dep) 224
X IIIISIIIIE 7777 ALO (R, g dep)
1/<///,LM,EHN15(%$”
iy unnEEEEEENEEEEREEREE
05 ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
250 500 750 1000 1250 250 500 750 1000 1250 500 1000 1500 2000 2500
Pz (GeV) Py (GeV) Hr jois (GEV)
> p¢ 7z (lack of large K-factor): |
- _— arge small
> finite loop contributions matter g
» correctly reproduced dip towards p: = 200 GeV 214'4 gz
> prj Hr jets (giant K-factor): T T
» very good agreement between nLO and NLO 9 q 9

» small R uncertainties — driven only by subleading diagrams
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Ht type observables at ANLO for Z+jet and for dijets

» Z+jet at NNLO like dijets at NLO
(same topology, Z only provides the enhancement O (as In” pej1/mz))

Q
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Ht type observables at ANLO for Z+jet and for dijets

K-factor wrt LO

» Z+jet at NNLO like dijets at NLO

(same topology, Z only provides the enhancement O (as In” pej1/mz))

MCFM 5.7, CTEQ6M .
pp, 14 Tev. Z+J
1000 | antik, R=0.7
Pej1 > 200 GeV.
100
Ko mmmi|
NLO
w7 ANLO (1 dep)
ANLO (R g dep)
1T T e T

500 1000 1500 2000 2500
H1 jets (GeV)
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Ht type observables at ANLO for Z+jet and for dijets

» Z+jet at NNLO like dijets at NLO
(same topology, Z only provides the enhancement O (as In” pej1/mz))

K-factor wrt LO

1000

100

10

MCFM 5.7, CTEQGM

pp, 14 TeV. Z+j
L antik, R=0.7

Py > 200 GeV.

LO 1D
NLO ==
TNLO (u dep)
ANLO (R g dep)

S et A e e O
s=sSSssel =

500 1000 1500 2000 2500
Hr jets (GeV)
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dijets 0Pt Hriz [T
NLO Hy/2

do/dV [nb/GeV]

NLOjet++, CTEQ6M
antik, R=0.7 S

200 400 600 800 1000
tH; [GeV]

» Hr for dijets receives large contributions at NLO!

> caused by appearance of the third jet from
initial state radiation
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Ht type observables at ANLO for Z+jet and for dijets

K-factor wrt LO

» Z+jet at NNLO like dijets at NLO

(same topology, Z only provides the enhancement O (as In” pej1/mz))

1000

100

10

MCFM 5.7, CTEQGM

pp, 14 TeV. Z+j
L antik, R=0.7

Py > 200 GeV.

LO 1D
NLO ==
TNLO (u dep)
ANLO (R g dep)

S et A e e O
s=sSSssel =

500 1000 1500 2000 2500
Hr jets (GeV)
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10°

dijets 0Pt Hriz [T
NLO Hy/2

do/dV [nb/GeV]

NLOjet++, CTEQ6M
antik, R=0.7 S

200 400 600 800 1000
tH; [GeV]

» Hr for dijets receives large contributions at NLO!

> caused by appearance of the third jet from
initial state radiation

> if the same is valid for Z + j we should see only

. 2
small correction for Hr jo = > 7 1 ptj;
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Ht type observables at ANLO for Z+jet and for dijets

» Z+jet at NNLO like dijets at NLO
(same topology, Z onIy provides the enhancement O (s In® p,j1/mz))

MCFM 5.7, CTEQSM
pp, 14 TeV
1000 | antik, R=0.7
Pej1 > 200 GeV.
o
3
£ 100 |
2 Ko N mmm|
2 NLO ==
(] _
;" 10 f NNLO (u dep)
ANLO (R g dep)
fl==S=SSSSSS S
500 1000 1500 2000 2500
HT,jets (Gev)
pp. 14 Tev' . j
1000 FMCFM 5.7, CTEQ6M Z+j
anti-k, R=0.7 s
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3 100 1
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g LO [
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1 W\WYW\W\ TITT

500

1000

1500 2000
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2500

do/dV [nb/GeV]

10°

NLOjet++, CTEQ6M
anti-k, R=0.7

dijets 0Pt Hriz [T
NLO Hy/2

200 400 600
tH; [GeV]

» Hr for dijets receives large contributions at NLO!

> caused by appearance of the third jet from

initial state radiation

i=1 Pt.ji

» and indeed it is small!

Simulating NNLO QCD corrections for processes with giant K factors

if the same is valid for Z + j we should see only
small correction for Hr jp = .2
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