
Wilson loops and 
Amplitudes in N=4 SYM

 

Claude Duhr

In collaboration with V. Del Duca and V. A. Smirnov.

September 15, 2010
HP2.3, Florence

Mittwoch, 15. September 2010



Why planar N=4 SYM..?

• Why are we interested in planar N=4 Super-Yang-Mills?
In the end, the world is not N=4 SYM, so we should rather 
concentrate on QCD...
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Why planar N=4 SYM..?

• Why are we interested in planar N=4 Super-Yang-Mills?
In the end, the world is not N=4 SYM, so we should rather 
concentrate on QCD...

• Aim: Find a ‘simpler’ gauge theory, that can act as a toy 
model to explore the structure of gauge theory amplitudes 
to higher loop orders.

• But in QCD, life is (too) hard...
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Why planar N=4 SYM..?

• N=4 planar SYM is such a simpler gauge theory!

➡ It is conformal to all orders in perturbation theory.
➡ AdS/CFT correspondence might even give some insight 

into the strongly coupled sector of the theory.
➡ N=4 SYM amplitudes are part of QCD amplitudes, e.g., 

at one-loop level:

AYM
n = AN=4

n − 4AN=1
n + Ascalar

n

• A lot of new developments were made in the last few years, 
and the field is developing very fast!

Mittwoch, 15. September 2010



Outline

• Several intriguing conjectures/observations in N=4 SYM: 

➡ ABDK/BDS ansatz.

➡ MHV amplitude - Wilson loop duality.

➡ Computation of two-loop remainder functions.
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The ABDK/BDS ansatz

• Bern, Dixon and Smirnov (BDS) extended this conjecture 
to all loop orders, by exponentiating the one-loop amplitude:

9.1. The ABDK/BDS ansatz 92

where
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The quantities c1 and c2 are expected to be rational numbers, but they cannot be determined from

the computation of the three-loop four-point amplitude, because they cancel in the final result. BDS

then extended the iteration formulæ (9.1) and (9.5) and formulated an ansatz for a generic n-point

MHV amplitude in MSYM. This all-orders ansatz reads

Mn(ε) = 1 +
∞
∑

l=1

al M (l)
n (ε) = exp

∞
∑

l=0

al

[

f (l)(ε)M (1)
n (lε) + C(l) + E(l)

n (ε)

]

, (9.7)

The only kinematical dependence in the right-hand side of Eq. (9.7) is in the one-loop amplitude

M (1)
n (lε). The quantities f (l)(ε) and C(l) are universal and are independent of the kinematics and

the number of external particles. f (l)(ε) is expected to be a polynomial of degree two in ε, and

C(l) to be a polynomial of uniform transcendental weight in Riemann ζ values. The values of these

functions for l = 2, 3 are given in Eqs. (9.2) and (9.6). The functions E(l)
n (ε) are additional O(ε)

contributions. It is easy to see that we must have f (1)(ε) = C(1) = E(1)
n (ε) = 0 in order to reproduce

the one-loop result. Expanding the exponential in Eq. (9.7) and collecting powers of the coupling

constant a, the BDS ansatz reproduces the two and three-loop iteration formulæ (9.1) and (9.5).

Using the normalisation of Eq. (8.12) in terms of the rescaled coupling ḡ2, Eq. (9.7) can be written

in the equivalent form,

mn(ε) = 1 +
∞
∑

l=1

ḡ2l m(l)
n (ε) = exp

∞
∑

l=0

ḡ2l 2l Gl(ε)

[

f (l)(ε)
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n (lε)

2G(lε)
+ C(l) + E(l)

n (ε)

]

. (9.8)

The BDS ansatz was first shown to fail by Alday and Maldacena in the limit of a large number

of gluons using the ADS/CFT correspondence [11]. This result was backed up by the computation

of the six-edge Wilson loop and using the conjecture that the n-edged Wilson loop can be related

to scattering amplitudes in MSYM [94]. The question was settled in Ref. [12] with the explicit

numerical computation of the two-loop six-point amplitude, which confirmed the Wilson loop result

and demonstrated the breakdown of the BDS ansatz for l = 2 and n = 6 in the finite contribution of

the parity-even part. Recently, also the seven and eight-edged Wilson loops have been computed [13].

Assuming that the duality between Wilson loops and MSYM scattering amplitudes holds even

beyond n = 6, the conclusion is that the BDS ansatz fails for n = 7 and 8 as well. The breakdown

of the ansatz can be quantified by the remainder function R(2)
n , defined as the difference between

the left and right-hand sides of the ABDK ansatz,

R(2)
n ≡ M (2)

n (ε) − 1

2

(

M (1)
n (ε)

)2 − f (2)(ε)M (1)
n (2ε) − C(2). (9.9)

The previous results can then be summarized by the statement that R(2)
n #= 0 for n ≥ 6, and

R(2)
n is a constant with respect to ε. Since the computation of Ref. [12] was numerical, we ignore at

• Anastasiou, Bern, Dixon and Kosower (ABDK) 
formulated a conjecture for a generic two-loop MHV 
amplitude in N=4 SYM:

Chapter 9

The BDS ansatz and multi-Regge
kinematics

9.1 The ABDK/BDS ansatz

In Ref. [9], Anastasiou, Bern, Dixon and Kosower (ABDK) formulated an ansatz for the two-loop

n-point MHV amplitude in MSYM, which expresses the two-loop amplitude in terms of the one-loop

amplitude,

M (2)
n (ε) =

1

2

(

M (1)
n (ε)

)2
+ f (2)(ε)M (1)

n (2ε) + C(2) + O(ε), (9.1)

where

f (2)(ε) =
ψ(1 − ε) + γE

ε
and C(2) = −5

4
ζ4. (9.2)

Note that because of the infrared poles in 1/ε2 in the one-loop amplitude, the one-loop amplitude

must be known through O(ε2). The origin of this ansatz goes back to the computation by the same

people of the two-loop splitting function in MSYM, which was shown to satisfy an iteration relation

very similar to Eq. (9.1),

r(2)
S (ε) =

1

2

(

r(1)
S (ε)

)2
+ f (2)(ε) r(1)

S (2ε), (9.3)

where r(l)
S denotes the l-loop splitting function, rescaled by the tree-level result. Indeed, in the

collinear limit the one and two-loop n-point MHV amplitudes must factorise according to

M (1)
n → M (1)

n−1 + r(1)
S ,

M (2)
n → M (2)

n−1 + M (1)
n−1 r(1)

S + r(2)
S ,

(9.4)

and it is easy to see that the ABDK ansatz (9.1) is the only iteration which is compatible with both

the iteration of the two-loop splitting amplitude, Eq. (9.3) and the collinear factorisation (9.4). The

ansatz was backed up by comparing the iteration to the two-loop four-point amplitude in MSYM.

In Ref. [92] the ABDK ansatz was shown to hold also in the case of the five-point amplitude, which

has been computed numerically.

Bern, Dixon and Smirnov (BDS) computed the three-loop four-point MSYM amplitude [10], and

showed that it satisfies an iteration formula similar to the ABDK ansatz for the two-loop amplitude,

M (3)
4 (ε) = −1

3

(

M (1)
4 (ε)

)3
+ M (1)

4 (ε)M (2)
4 (ε) + f (3)(ε)M (1)

4 (3ε) + C(3) + O(ε), (9.5)
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The ABDK/BDS ansatz

[ABDK; BDS] [Bern, Czakon, 
Kosower, Roiban, 

Smirnov]
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n=4 n=5 n=6

l=2

l=3

✓t

✓t

• t(num.)✓t(num.)

• What goes wrong for n = 6 ..?

• The answer comes from the Wilson loop!

The ABDK/BDS ansatz

[ABDK; BDS] [Bern, Dixon, 
Kosower, Roiban, 

Spradlin, Vergu, Volovich]

[Bern, Czakon, 
Kosower, Roiban, 

Smirnov]
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• Definition of a Wilson loop:

• It is conjectured that Wilson loop along an n-edged polygon 
is equal to an n-point MHV scattering amplitude:

pi = xi,i+1 = xi − xi+1

conformally invariant cross ratios are not invariant in such a limit [22]. Less constraining

Regge limits have been analysed in Ref. [23]. The simplest of those limits to feature an

exact Regge factorisation of w(L)
6 is the quasi-multi-Regge kinematics (QMRK) of a pair

along the ladder [24, 25].

In Sec. 3, we recall the QMRK of a pair along the ladder for the six-edged Wilson loop,

and we show that the QMRK of three-of-a-kind along the ladder [26] for the seven-edged

Wilson loop, the QMRK of four-of-a-kind along the ladder [27] for the eight-edged Wilson

loop, and in general the QMRK of a cluster of (n − 4)-of-a-kind along the ladder for the

n-edged Wilson loop do not modify the analytic dependence of w(L)
n on the conformally

invariant cross ratios. That is, this class of kinematics exhibits an exact Regge factorisation

of w(L)
n . Thus, the result for w(L)

n in these kinematics is the same as the result in general

kinematics, although the computation is remarkably simplified with respect to the same

computation in general kinematics. Finally, we note that although in Sec. 4 we apply the

analysis of Sec. 3 to the computation of the six-edged two-loop Wilson loop, nothing of

what we consider in Sec. 3 is specific to two loops: The analysis of Sec. 3 is valid for any

number of loops.

In Sec. 4, we brief on how the Feynman-parameter-like integrals of the two-loop six-

edged Wilson loop have been computed in the QMRK of a pair along the ladder, and on the

type of functions which appear in the final result. Because of the exact Regge factorisation,

the ensuing remainder function is valid in general kinematics. It can be expressed as a linear

combination of multiple polylogarithms of uniform transcendental weight four. However,

the result is far too long to be reported in this letter. We present it in an electronic form at

www.arxiv.org where a text file containing the Mathematica expression for the remainder

function is provided.

2. The two-loop Wilson loop

The Wilson loop is defined through the path-ordered exponential,

W [Cn] = Tr P exp

[

ig

∮

dτ ẋµ(τ)Aµ(x(τ))

]

, (2.1)

computed on a closed contour Cn. In what follows, the closed contour is a light-like n-edged

polygonal contour [10]. The contour is such that labelling the n vertices of the polygon as

x1, . . . , xn, the distance between any two contiguous vertices, i.e., the length of the edge

in between, is given by the momentum of a particle in the corresponding colour-ordered

scattering amplitude,

pi = xi − xi+1 , (2.2)

with i = 1, . . . , n. Because the n momenta add up to zero,
∑n

i=1 pi = 0, the n-edged

contour closes, provided we make the identification x1 = xn+1.

In the weak-coupling limit, the Wilson loop can be computed as an expansion in

the coupling. The expansion of Eq. (2.1) is done through the non-abelian exponentiation

theorem [28, 29], which gives the vacuum expectation value of the Wilson loop as an

– 3 –

• Proven analytically at one-loop for arbitrary n, and at two-
loops for n = 4, 5, 6.

=
[Alday, Maldacena;

Drummond, Korchemsky, Sokatchev]

[Drummond, Henn, Korchemsky, Sokatchev;
Brandhuber, Heslop, Spence]

Wilson loops in N=4 SYM
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Wilson loops in N=4 SYM
• Wilson loops possess a conformal symmetry, and it was 

shown that a solution to the corresponding Ward identities 
is the BDS ansatz, e.g., at two-loops,

exponential,

〈W [Cn]〉 = 1 +
∞
∑

L=1

aLW (L)
n = exp

∞
∑

L=1

aLw(L)
n , (2.3)

where the coupling is defined as

a =
g2N

8π2
. (2.4)

For the first two loop orders, one obtains

w(1)
n = W (1)

n , w(2)
n = W (2)

n −
1

2

(

W (1)
n

)2
. (2.5)

The one-loop coefficient w(1)
n was evaluated in Refs. [11, 12], where it was given in terms

of the one-loop n-point MHV amplitude,

w(1)
n =

Γ(1 − 2ε)

Γ2(1 − ε)
m(1)

n = m(1)
n − n

ζ2

2
+ O(ε) , (2.6)

where the amplitude is a sum of one-loop two-mass-easy box functions [30],

m(1)
n =

∑

p,q

F 2me(p, q, P,Q) , (2.7)

where p and q are two external momenta corresponding to two opposite massless legs,

while the two remaining legs P and Q are massive. The two-loop coefficient w(2)
n has been

computed analytically for n = 4 [13] and n = 5 [14] and numerically for n = 6 [16] and

n = 7, 8 [17].

In Ref. [14] it was established that the Wilson loop fulfils a special conformal Ward

identity, whose solution is the BDS ansatz plus, for n ≥ 6, an arbitrary function of the

conformally invariant cross-ratios, defined in Eq. (2.11). Thus, the two-loop coefficient w(2)
n

can be written as

w(2)
n (ε) = f (2)

WL(ε)w(1)
n (2ε) + C(2)

WL + R(2)
n,WL + O(ε) , (2.8)

where the constant is the same as in Eq. (1.2), C(2)
WL = C(2) = −ζ2

2/2, and the function

f (2)
WL(ε) is [13, 17, 31]2,

f (2)
WL(ε) = −ζ2 + 7ζ3ε − 5ζ4ε

2 . (2.9)

With the two-loop coefficient w(2)
n given by Eqs. (2.8) and (2.9) and the two-loop MHV

amplitude given by Eqs. (1.2) and (1.3), the duality between Wilson loops and amplitudes

is expressed by the equality of their remainder functions [17],

R(2)
n,WL = R(2)

n . (2.10)

Defining the conformally invariant cross ratios as,

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

, (2.11)

2Note that because of the different normalisation between the one-loop amplitude and the Wilson loop

(2.6), f
(2)
WL

differs from the analogous function for the amplitude, given after Eq. (1.2).
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n given by Eqs. (2.8) and (2.9) and the two-loop MHV

amplitude given by Eqs. (1.2) and (1.3), the duality between Wilson loops and amplitudes

is expressed by the equality of their remainder functions [17],
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[Drummond, Henn, 
Korchemsky, Sokatchev]
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• ... but we can always add a arbitrary function of conformal 
invariants and we still obtain a solution to the Ward 
identities!

+R(2)
n (uij)

exponential,
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n

can be written as

w(2)
n (ε) = f (2)

WL(ε)w(1)
n (2ε) + C(2)

WL + R(2)
n,WL + O(ε) , (2.8)

where the constant is the same as in Eq. (1.2), C(2)
WL = C(2) = −ζ2

2/2, and the function

f (2)
WL(ε) is [13, 17, 31]2,

f (2)
WL(ε) = −ζ2 + 7ζ3ε − 5ζ4ε

2 . (2.9)

With the two-loop coefficient w(2)
n given by Eqs. (2.8) and (2.9) and the two-loop MHV

amplitude given by Eqs. (1.2) and (1.3), the duality between Wilson loops and amplitudes

is expressed by the equality of their remainder functions [17],

R(2)
n,WL = R(2)

n . (2.10)

Defining the conformally invariant cross ratios as,

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

, (2.11)

2Note that because of the different normalisation between the one-loop amplitude and the Wilson loop

(2.6), f
(2)
WL

differs from the analogous function for the amplitude, given after Eq. (1.2).
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The breakdown of BDS
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The breakdown of BDS

n=4 n=5 n=6

l=2

l=3

✓t

✓t

• t(num.)✓t(num.)

No non trivial 
conformal cross-

ratios, 

R(l)
4 = R(l)

5 = 0.

There are three non 
trivial cross ratios:

u1 =
s12 s45

s123 s345
, u2 =

s23 s56

s123 s234
,

u3 =
s34 s61

s234 s345
,
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• At strong coupling, the AdS/CFT machinery was used to 
compute some special cases of the remainder function
➡ for six edges, in 3+1 dimensions when all cross ratios 

are equal

Strong coupling
As µ is real and very large, u is very close to zero. As we approach µ = 1, u grows

until u = 1/4 at µ = 1. For u > 1/4, µ is a phase, with µ = −1 at u = 1 and u becoming

very large as µ approaches −i.

The final answer for the remainder function in this regime is then obtained by adding

up all the contributions

R(u, u, u) = −π

6
+

1

3π
φ2 +

3

8

(

log2 u + 2Li2(1 − u)
)

, u =
1

4 cos2(φ/3)
(5.11)

This is the remainder function for the scattering of six gluons at strong coupling in the

particular kinematical configuration in which all the cross-ratios ui coincide.
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Fig. 16: Remainder function (5.11) at strong coupling for u1 = u2 = u2 = u

5.2. A curious observation

The remainder function at two loops for the case at hand was extensively considered in

[42], based on previous work [13,12,43]. In that paper the remainder function was computed

numerically for several values of u (in particular, u = 1/9, 1/4, 1, 3.83 and u = 100). We

could try to fit their numerics by a function with some arbitrary coefficients but the general

structure of (5.11) , similar to what it was done in [44] for the case of the octagon in AdS3.

More precisely, we consider a function of the form

Rc1,c2,c3
= c1

(

−π

6
+

1

3π
φ2

)

+ c2
3

8

(

log2 u + 2Li2(1 − u)
)

+ c3 (5.12)

The idea is that the high temperature of the TBA equations are not too sensitive to the

precise form of the kernels, so that perhaps this functional form holds for all values of the

coupling. In addition, in our computation, the two terms arise in a somewhat independent

fashion, so we have given us the freedom to change their relative coefficients11. It turns

out that for certain values of c′s, namely c1 ≈ 12.2, c2 ≈ 11.4, c3 ≈ −9.1, we get a quite

good approximation of the two loops result, see the following figure

11 Note that we obtain that c1/c2 ≈ 1.07, which is close to one, so perhaps we should not change

the relative coefficients of the two terms!
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➡ for eight edges, in 1+1 dimensions
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Figure 1: Plot for R
(2)
8 (red) and R

strong
8 (blue) as a function of |m| for φ = 0 (left) and φ = π/4

(right). Note that the two curves basically overlap and that the numerical difference between them
is too small to be appreciated by eye.

Eq. (3.2) is the main result of this paper. We checked its correctness by comparing to

various points obtained by the numerical code of Ref. [13]6. Note that in Eq. (3.2) the

symmetry properties (2.15) of the remainder function are manifest. Furthermore, in the

limit where one of the χ variables becomes large or small, Eq. (3.2) immediately reduces

to −π4

18 , in agreement with Eq. (2.16). Finally, we can extract from Eq. (3.2) the value of

the regular octagon, which corresponds to χ± = 1,

R(2)
8,WL(1, 1) = −

π4

18
−

1

2
ln4 2 " −5.52703 . . . , (3.3)

in a very good agreement with the numerical value quoted in Ref. [13].

4. Comparison to the strong coupling result

In Ref. [18] the strong coupling octagon remainder function was given in terms of a

one-dimensional integral,

Rstrong
8,WL = −

1

2
ln

(

1 + χ−
)

ln

(

1 +
1

χ+

)

+
7π

6

+

∫ +∞

−∞
dt

|m| sinh t

tanh(2t+ 2iφ)
ln
(

1 + e−2π|m| cosh t
)

,

(4.1)

where m = |m|eiφ is a complex variable related to χ± via

χ+ = e2πImm and χ− = e−2πRem . (4.2)

Eq. (4.1) is valid in the first quadrant of the complex m-plane, 0 < φ < π
2 , and is extended

over the whole complex plane by analytic continuation. Note that Eq. (4.1) is invariant

under φ → φ+ π
2 , reflecting the invariance of the remainder function under exchange and

6We are grateful to Paul Heslop and Valya Khoze for providing us with this check.
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where m = |m|eiφ is a complex variable related to χ± via

χ+ = e2πImm and χ− = e−2πRem . (4.2)

Eq. (4.1) is valid in the first quadrant of the complex m-plane, 0 < φ < π
2 , and is extended

over the whole complex plane by analytic continuation. Note that Eq. (4.1) is invariant

under φ → φ+ π
2 , reflecting the invariance of the remainder function under exchange and

6We are grateful to Paul Heslop and Valya Khoze for providing us with this check.
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• Anastasiou, Brandhuber, Heslop, Khoze, Spence and 
Travaglini worked out the two-loop Wilson loop diagrams:

...

• Each of these diagrams is an integral, similar to a Feynman 
parameter integral.

• Numerical evaluations of the integrals allow to compare to 
the strong coupling answer.

Weak coupling

Mittwoch, 15. September 2010



Weak coupling vs. strong coupling

As µ is real and very large, u is very close to zero. As we approach µ = 1, u grows

until u = 1/4 at µ = 1. For u > 1/4, µ is a phase, with µ = −1 at u = 1 and u becoming

very large as µ approaches −i.

The final answer for the remainder function in this regime is then obtained by adding

up all the contributions

R(u, u, u) = −π

6
+

1

3π
φ2 +

3

8

(

log2 u + 2Li2(1 − u)
)

, u =
1

4 cos2(φ/3)
(5.11)

This is the remainder function for the scattering of six gluons at strong coupling in the

particular kinematical configuration in which all the cross-ratios ui coincide.
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Fig. 16: Remainder function (5.11) at strong coupling for u1 = u2 = u2 = u

5.2. A curious observation

The remainder function at two loops for the case at hand was extensively considered in

[42], based on previous work [13,12,43]. In that paper the remainder function was computed

numerically for several values of u (in particular, u = 1/9, 1/4, 1, 3.83 and u = 100). We

could try to fit their numerics by a function with some arbitrary coefficients but the general

structure of (5.11) , similar to what it was done in [44] for the case of the octagon in AdS3.

More precisely, we consider a function of the form

Rc1,c2,c3
= c1

(

−π

6
+

1

3π
φ2

)

+ c2
3

8

(

log2 u + 2Li2(1 − u)
)

+ c3 (5.12)

The idea is that the high temperature of the TBA equations are not too sensitive to the

precise form of the kernels, so that perhaps this functional form holds for all values of the

coupling. In addition, in our computation, the two terms arise in a somewhat independent

fashion, so we have given us the freedom to change their relative coefficients11. It turns

out that for certain values of c′s, namely c1 ≈ 12.2, c2 ≈ 11.4, c3 ≈ −9.1, we get a quite

good approximation of the two loops result, see the following figure

11 Note that we obtain that c1/c2 ≈ 1.07, which is close to one, so perhaps we should not change

the relative coefficients of the two terms!
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Figure 8: Angular plot of RAM
8 (m) (solid curve) and R(2)

8 (m) for kinematic sets A
(blue), B (green) and C (red) at |m| = 0.45 as a function of φ.

function. The average value we found for R(2) in the region is fully consistent with
twice the result for the two-loop hexagon remainder.

3.4 Universality of the octagon remainder function

The agreement between the two shifted and rescaled remainder functions points at a
linear relation between (3.12) and the weak-coupling remainder function, namely

R(2)
8 (uij) = A(2) RAM

8 (uij) + B(2) , (3.31)

where uij denotes the various cross-ratio, and A and B are two constants that we now
determine. We can evaluate (3.31) at special values of m, in particular for m = 0,
corresponding to a regular octagon, and for |m| → ∞, where R8 → R6 at strong and
weak coupling. Doing so, we obtain

A(2) =
R(2)

8−reg − 2R(2)
6

RAM
8−reg − 2RAM

6

, (3.32)

B(2) = 2
RAM

6 R(2)
8−reg −R(2)

6 RAM
8−reg

2RAM
6 −RAM

8−reg

. (3.33)

Using (3.19) and (3.22), as well as (3.27) and (3.28), one arrives at the following
numerical estimates for A(2) and B(2),

A(2) = −5.41± 0.03 , B(2) = 14.5± 0.1 . (3.34)

17

• Hexgon • Octagon

[Alday, Gaiotto, Maldacena] [Brandhuber, Heslop, Khoze 
Spence, Travaglini]

• Could it be that the strong coupling result is equal to 
the weak coupling result???

• Only analytic results at weak coupling can tell...
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Weak coupling
• For n = 6, many of the integrals can be computed explicitly, 

but one is particularly ’hard’:

• The integrals do not explicitly depend on conformal ratios.

• But is all this complexity really needed..?

• Could we go to simplified kinematics?

We also set D = 4 − 2εUV = 4 + 2ε where εUV = −ε > 0. The special four-point case
is considered later.

We write this diagram in the most general configuration as9

fH(p1, p2, p3; Q1, Q2, Q3)

:=
Γ(2 − 2εUV)

Γ(1 − εUV)2

∫ 1

0

( 3∏

i=1

dτi

)∫ 1

0

( 3∏

i=1

dαi

)
δ(1 −

3∑

i=1

αi) (α1α2α3)
−εUV

N
D2−2εUV

,

(B.1)

where
D := −α1α2(z1 − z2)

2 − α2α3(z2 − z3)
2 − α1α3(z1 − z3)

2 , (B.2)

and

(z1 − z2)
2 = Q2

3 + 2(p1p2)(1 − τ1)τ2 + 2(Q3p1)(1 − τ1) + 2(Q3p2)τ2 , (B.3)

(z2 − z3)
2 = Q2

1 + 2(p2p3)(1 − τ2)τ3 + 2(Q1p2)(1 − τ2) + 2(Q1p3)τ3 ,

(z3 − z1)
2 = Q2

2 + 2(p3p1)(1 − τ3)τ1 + 2(Q2p3)(1 − τ3) + 2(Q2p1)τ1 .

The original expressions for the zi − zi+1 are

zi − zi+1 = Qi+2 + pi(1 − τi) + pi+1τi+1 , i = 1, 2, 3 . (B.4)

The expression for the numerator N has two kinds of terms. The first three lines
involve τ and α parameters, whereas the remaining three lines involve only the τ
parameters. It is given by

N = 2(p1p2)(p1p3)
[
α1α2(1 − τ1) + α3α1τ1

]

+ 2(p1p2)(p2p3)
[
α2α3(1 − τ2) + α1α2τ2

]

+ 2(p1p3)(p2p3)
[
α3α1(1 − τ3) + α2α3τ3

]

+ 2α1α2

[
2(p1p2)(p3Q3) − (p2p3)(p1Q3) − (p3p1)(p2Q3)

]

+ 2α2α3

[
2(p2p3)(p1Q1) − (p3p1)(p2Q1) − (p1p2)(p3Q1)

]

+ 2α3α1

[
2(p3p1)(p2Q2) − (p1p2)(p3Q2) − (p2p3)(p1Q2)

]
. (B.5)

B.1 Four-point case

The four-point case can be obtained by setting

Q3 = Q1 = 0 , Q2 = p4 = −(p1 + p2 + p3) , (B.6)

9We remind the reader that we will always suppress the common prefactor defined in (4.1) from
the expression of all diagrams.
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• Quasi-multi-Regge kinematics

|p3⊥|2 � |p4⊥|2 � |p5⊥|2 � |p6⊥|2

y3 � y4 � y5 � y6

[Del Duca, CD, Glover]

• Conformal cross ratios are no 
longer trivial

7.3. Quasi multi-Regge limit 74
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Figure 7.1: Amplitude in multi-Regge kinematics. The green blobs indicate the coefficient functions
(impact factors) and the Lipatov vertices describing the emission of gluons along the ladder.

where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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)

=
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V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn , and q2 = −p2 − p3,

(7.19)

and ti = q 2
i " −|qi⊥|2. The coefficient functions C (0)

appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2 ; 4; q1).

(7.22)

In the limit of more restrictive kinematics, sayy3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn

(7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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2 . The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V
(0)
n−4

are the tree-lev
el Lipatov vertices

describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V
(0)
n−4

(

q2; 4
+ , . . . , (n

− 1)
+ ; q1

)

=
q∗2⊥ q1⊥

p4⊥

√ x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉
,

V
(0)
n−4

(

q2; 4
− , . . . , (n

− 1)
− ; q1

)

=
[

V
(0)
n−4

(

q2; 3
+ , . . . , (n

− 1)
+ ; q1

)

]∗
,

(7.20)

where we defined xi =

p+
i

p+
3

+ p+
4

+ . . . + p+
n−1

.

(7.21)

Note that for n = 5 we recover
the Lipatov vertex defined in Eq. (7.15),

V
(0)
1

(q2; 4; q1) = V
(0) (q2; 4; q1).

(7.22)

In the limit of more restrict
ive kinematics, say
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(7.23)

the amplitude must factoriz
e accordingly, which implies that the Lipatov vertices

themselves must

factoriz
e,

V
(0)
n−4(q2; 4, .
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(0)
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(7.24)

7.3. Quasi multi-Regge limit 74

p1

p2

pn

p3

qn−3

qn−4

p4

p5

q2

pn−2

q1

pn−1

sn−3

sn−4

s2

s1

κ1

κ2

κn−5

κn−4

...

Figure 7.1: Amplitude in multi-Regge kinematics. The green blobs indicate the coefficient functions
(impact factors) and the Lipatov vertices describing the emission of gluons along the ladder.

where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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,
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where we defined
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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where we defined
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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where we defined

xi =
p+
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p+
3 + p+
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. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4
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q2; 4
+, . . . , (n − 1)+; q1

)

=
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〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[
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n−4
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)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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The six-point remainder function

• Conclusion: It is enough to compute the remainder 
function in this restricted area of phase space.

• In the limit, all integrals are

➡ at most three-fold.
➡ dependent on conformal cross ratios only.

• The resulting integrals are much simpler and can be 
solved in a closed form, and we can extract the two-loop 
six-point remainder function,

exponential,

〈W [Cn]〉 = 1 +
∞
∑

L=1

aLW (L)
n = exp

∞
∑

L=1

aLw(L)
n , (2.3)

where the coupling is defined as

a =
g2N

8π2
. (2.4)

For the first two loop orders, one obtains

w(1)
n = W (1)

n , w(2)
n = W (2)

n −
1

2

(

W (1)
n

)2
. (2.5)

The one-loop coefficient w(1)
n was evaluated in Refs. [11, 12], where it was given in terms

of the one-loop n-point MHV amplitude,

w(1)
n =

Γ(1 − 2ε)

Γ2(1 − ε)
m(1)

n = m(1)
n − n

ζ2

2
+ O(ε) , (2.6)

where the amplitude is a sum of one-loop two-mass-easy box functions [30],

m(1)
n =

∑

p,q

F 2me(p, q, P,Q) , (2.7)

where p and q are two external momenta corresponding to two opposite massless legs,

while the two remaining legs P and Q are massive. The two-loop coefficient w(2)
n has been

computed analytically for n = 4 [13] and n = 5 [14] and numerically for n = 6 [16] and

n = 7, 8 [17].

In Ref. [14] it was established that the Wilson loop fulfils a special conformal Ward

identity, whose solution is the BDS ansatz plus, for n ≥ 6, an arbitrary function of the

conformally invariant cross-ratios, defined in Eq. (2.11). Thus, the two-loop coefficient w(2)
n

can be written as

w(2)
n (ε) = f (2)

WL(ε)w(1)
n (2ε) + C(2)

WL + R(2)
n,WL + O(ε) , (2.8)

where the constant is the same as in Eq. (1.2), C(2)
WL = C(2) = −ζ2

2/2, and the function

f (2)
WL(ε) is [13, 17, 31]2,

f (2)
WL(ε) = −ζ2 + 7ζ3ε − 5ζ4ε

2 . (2.9)

With the two-loop coefficient w(2)
n given by Eqs. (2.8) and (2.9) and the two-loop MHV

amplitude given by Eqs. (1.2) and (1.3), the duality between Wilson loops and amplitudes

is expressed by the equality of their remainder functions [17],

R(2)
n,WL = R(2)

n . (2.10)

Defining the conformally invariant cross ratios as,

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

, (2.11)

2Note that because of the different normalisation between the one-loop amplitude and the Wilson loop

(2.6), f
(2)
WL

differs from the analogous function for the amplitude, given after Eq. (1.2).
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• The result is completely expressed in terms Goncharov’s 
multiple polylogarithm,

explicitly dependent on the conformal cross ratios only3. We checked numerically that the

sum of the Mellin-Barnes integrals in the QMRK is equal to the sum of all the original

parametric integrals, the latter being evaluated numerically using FIESTA [40].

The resulting Mellin-Barnes integrals are then evaluated by directly closing contours

and summing up residues or by exchanging a Mellin-Barnes integration with an integral of

Euler type. The infinite sums which appear in the intermediate steps of the computation

are typically generalised harmonic sums [41, 42] as well as multiple binomial sums [43, 44].

The convergence of the series requires the conformal cross ratios to be less than 1, and

in the following we concentrate on this kinematic region, within the Euclidean region.

Details on the explicit computation of the integrals will be presented in a forthcoming

publication [45]. Here it suffices to say that, except for the contribution coming from

the hard diagram with six light-like edges, all the integrals can be expressed in terms of

harmonic polylogarithms [46] in one conformal cross ratio. In turn, the six-edged hard

diagram constitutes the bulk of the final result, and can be written as a linear combination

of Goncharov’s multiple polylogarithms [47], whose arguments are functions of conformal

cross ratios. These polylogarithms are defined by the iterated integration,

G(!w; z) =

∫ z

0

dt

t − a
G(!w′; t) and G(!0n; z) =

1

n!
lnn z , (4.2)

where we define !w = (a, !w′), and for z = 1 they are manifestly real, if all the elements

in the weight vector !w are either greater than 1 or negative. The number of elements of

!w is called the (transcendental) weight of G(!w; z). The polylogarithms we obtain can be

divided into several classes, corresponding to the elements wi of the weight vector,

1. wi = 1/uj , 1/(1 − uj), (1 − uj)/(1 − uj − uk).

It is easy to see that in this case wi > 1 or wi < 0, for 0 < ui, uj < 1.

2. wi = 1/(ui + uj).

In this case wi could be smaller than 1, i.e., the polylogarithms can develop an

imaginary part. However, we checked numerically that the imaginary parts cancel in

the final answer.

3. wi = 1/u(±)
jkl , 1/v

(±)
jkl , where we define

u(±)
jkl =

1 − uj − uk + ul ±
√

(uj + uk − ul − 1)2 − 4 (1 − uj) (1 − uk) ul

2 (1 − uj) ul
,

v(±)
jkl =

uk − ul ±
√

−4ujukul + 2ukul + u2
k + u2

l

2 (1 − uj) uk
.

(4.3)

3Note however that the coefficients of the integrals do not only depend on the conformal cross ratios,

but on logarithms of Mandelstam invariants. This is to be expected since the BDS contribution to w
(2)
6

depends on such quantities.
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Euler type. The infinite sums which appear in the intermediate steps of the computation

are typically generalised harmonic sums [41, 42] as well as multiple binomial sums [43, 44].

The convergence of the series requires the conformal cross ratios to be less than 1, and

in the following we concentrate on this kinematic region, within the Euclidean region.

Details on the explicit computation of the integrals will be presented in a forthcoming
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It is easy to see that in this case wi > 1 or wi < 0, for 0 < ui, uj < 1.

2. wi = 1/(ui + uj).

In this case wi could be smaller than 1, i.e., the polylogarithms can develop an

imaginary part. However, we checked numerically that the imaginary parts cancel in

the final answer.

3. wi = 1/u(±)
jkl , 1/v

(±)
jkl , where we define

u(±)
jkl =

1 − uj − uk + ul ±
√

(uj + uk − ul − 1)2 − 4 (1 − uj) (1 − uk) ul

2 (1 − uj) ul
,

v(±)
jkl =

uk − ul ±
√

−4ujukul + 2ukul + u2
k + u2

l

2 (1 − uj) uk
.

(4.3)

3Note however that the coefficients of the integrals do not only depend on the conformal cross ratios,

but on logarithms of Mandelstam invariants. This is to be expected since the BDS contribution to w
(2)
6

depends on such quantities.
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The six-point remainder function

• The result is expressed as a very complicated combination 
of multiple polyogarithms. 
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The six-point remainder function

• If we want to compare directly the analytic expressions, 
we need identities among multiple polylogarithms...
➡ Needs the intervention of a mathematician!

• The theory of motives provides a way to handle such 
expression
➡ Hand-waving idea: Associate a ‘tensor calculus’ to 

polylogarithms that incorporates the functional 
identities.

[Goncharov, Spradlin, 
Vergu, Volovich]
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The six-point remainder function

[Goncharov, Spradlin, 
Volovich, Vergu]

the expression should provide encouragement and guidance as we seek deeper understanding

of SYM at loop level.

We present our new expression for R(2)
6 in the next section and then describe the algorithm

by which it was obtained.

II. THE REMAINDER FUNCTION R
(2)
6

The remainder function R(2)
6 is usually presented as a function of the three dual conformal

cross-ratios

u1 =
s12s45
s123s345

, u2 =
s23s56
s234s123

, u3 =
s35s61
s345s234

, (1)

of the momentum invariants si···j = (ki+ · · · kj)2, though we will see shortly that cross-ratios

of momentum twistor invariants are more natural variables. In terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R(u1, u2, u3) =
3

∑

i=1

(

L4(x
+
i , x

−
i )−

1

2
Li4(1− 1/ui)

)

− 1

8

(
3

∑

i=1

Li2(1− 1/ui)

)2

+
J4

24
+ χ

π2

12

(

J2 + ζ(2)
)

. (3)

Here we use the functions

L4(x
+, x−) =

3
∑

m=0

(−1)m

(2m)!!
log(x+x−)m($4−m(x

+) + $4−m(x
−)) +

1

8!!
log(x+x−)4 (4)

and

$n(x) =
1

2
(Lin(x)− (−1)n Lin(1/x)) , (5)

as well as the quantities

J =
3

∑

i=1

($1(x
+
i )− $1(x

−
i )),

χ =








−2 ∆ > 0 and u1 + u2 + u3 > 1,

+1 otherwise.

(6)
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Towards remainder functions 
with more legs

• The techniques we developed for the computation of the 
six-point remainder function can also be applied to 
Wilson loops with more edges.

• We focus on the 1+1 dimensional setup studied at strong 
coupling.
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Towards remainder functions 
with more legs

• The techniques we developed for the computation of the 
six-point remainder function can also be applied to 
Wilson loops with more edges.

• We focus on the 1+1 dimensional setup studied at strong 
coupling.

• The final answer involves 25.000 terms... 

... but they all collapse to 

the parametric representations of the Wilson loop diagrams given in Ref. [12] and derive

appropriate Mellin–Barnes (MB) representations for all of them. In multi-loop calculations

it is sometimes difficult to find an optimal choice for the MB representation. However, in

our case the MB representations are introduced in a straightforward way using the basic

formula,

1

(A+B)λ
=

1

Γ(λ)

∫ +i∞

−i∞

dz

2πi
Γ(−z)Γ(λ+ z)

Az

Bλ+z
, (3.1)

where the contour is chosen such as to separate the poles in Γ(. . . − z) from the poles in

Γ(. . . + z). Note that in our case λ equals an integer plus an off-set corresponding to the

dimensional regulator ε. In order to resolve the singularity structures in ε, we apply the

strategy based on the MB representation and given in Refs. [27, 28, 29, 30]. To this effect,

we apply the codes MB [31] and MBresolve [32] and obtain a set of MB integrals which

can safely be expanded in ε under the integration sign. After applying these codes, all

the integration contours are straight vertical lines. At the end of this procedure, the most

complicated integral is expressed as a tenfold MB integral, which is dependent on ratios of

Mandelstam invariants.

We then simplify the computation by exploiting the Regge exactness of the Wilson

loop [14] and extract the leading quasi-multi-Regge behaviour by applying MBasymptotics

[33]. Finally, we apply barnesroutines [34] to perform integrations that can be done by

corollaries of Barnes lemmas. We arrive at a representation in terms of at most fivefold

integrals depending explicitly on the cross ratios only4. We checked numerically that

the sum of the MB integrals in the QMRK equals the sum of all the original parametric

integrals, the latter being evaluated numerically using FIESTA [35, 36], as well as comparing

directly to results obtained by the numerical code of Ref. [12]. It is worth noting that,

although the individual integrals have undergone a huge simplification, due to the Regge

exactness of the Wilson loop the representation of w(2)
8 obtained in this way is valid in

arbitrary kinematics.

The integrals we obtained can be simplified further by introducing the χ± variables

via Eq. (2.14). Since most of the cross ratios become one in this limit, many of the MB

integrals can be done in closed form using (corollaries of) Barnes lemmas, which, after

some additional massaging, leaves us with at most twofold integrals to compute. All the

integrals can now be computed by closing the contours at infinity and summing up the

residues in the poles of the Γ functions. The sums we obtain are nested harmonic sums [37]

that sum up to (multiple) polylogarithms, a task that can easily be performed using the

FORM code XSummer [38]5. Combining all the terms, and after a final massaging, we arrive

at a very simple expression for the octagon remainder function,

R(2)
8,WL(χ

+,χ−) = −
π4

18
−

1

2
ln

(

1 + χ+
)

ln

(

1 +
1

χ+

)

ln
(

1 + χ−
)

ln

(

1 +
1

χ−

)

. (3.2)

4However, the coefficients of the integrals depend on logarithms of Mandelstam invariants.
5In intermediate steps, some of the integrals also get contributions from multiple binomial sums [39, 40].

All of these terms cancel however in the sum over all contributions.

– 6 –
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Octagon in 1+1 dimensions
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Figure 8: Angular plot of RAM
8 (m) (solid curve) and R(2)

8 (m) for kinematic sets A
(blue), B (green) and C (red) at |m| = 0.45 as a function of φ.

function. The average value we found for R(2) in the region is fully consistent with
twice the result for the two-loop hexagon remainder.

3.4 Universality of the octagon remainder function

The agreement between the two shifted and rescaled remainder functions points at a
linear relation between (3.12) and the weak-coupling remainder function, namely

R(2)
8 (uij) = A(2) RAM

8 (uij) + B(2) , (3.31)

where uij denotes the various cross-ratio, and A and B are two constants that we now
determine. We can evaluate (3.31) at special values of m, in particular for m = 0,
corresponding to a regular octagon, and for |m| → ∞, where R8 → R6 at strong and
weak coupling. Doing so, we obtain

A(2) =
R(2)

8−reg − 2R(2)
6

RAM
8−reg − 2RAM

6

, (3.32)

B(2) = 2
RAM

6 R(2)
8−reg −R(2)

6 RAM
8−reg

2RAM
6 −RAM

8−reg

. (3.33)

Using (3.19) and (3.22), as well as (3.27) and (3.28), one arrives at the following
numerical estimates for A(2) and B(2),

A(2) = −5.41± 0.03 , B(2) = 14.5± 0.1 . (3.34)

17
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Figure 2: Plot for R
(2)
8 (red) and R

strong
8 (blue) as a function of φ for |m| = 0.2 (left) and |m| = 0.45

(right).

inversion of the χ variables. In the collinear limit, Eq. (4.1) reduces to twice the remainder

function of the regular hexagon,

Rstrong
8,WL → 2Rstrong

6,reg =
7π

6
. (4.3)

Furthermore, the value of the regular octagon is also known analytically,

Rstrong
8,reg =

5π

4
−

1

2
ln2 2 . (4.4)

In Ref. [13] the following rescaled remainder function was introduced, both at weak

and at strong coupling,

R
i
8 =

Ri
8,WL −Ri

8,reg

Ri
8,reg − 2Ri

6,reg

, (4.5)

where i refers either to the strong or the weak coupling answer. It was observed that within

numerical errors this rescaled remainder function is equal at weak and at strong coupling,

R
strong
8 # R

(2)
8 , (4.6)

and it was conjectured that such a universality might extend even beyond the case of the

octagon and/or the special kinematics under consideration.

Since we are now in possession of an analytic expression for the weak coupling result,

we can check this conjecture to a much higher accuracy. We find that, similar to the case

of the hexagon remainder function, the two functions are indeed very close over a wide

range of values, but they differ substantially not only in magnitude, but also in shape (See

Fig. 1 and 2).

5. Conclusion

In this paper we have presented the first analytic computation of the two-loop remainder

function for an eight-edged Wilson loop in N = 4 SYM, in the kinematic set-up of Ref. [18].

The result is characterised by a remarkably simple form, a constant plus a product of four

logarithms. In fact it corresponds to the simplest function of uniform transcendentality

– 8 –

• Same pattern as for the hexagon:
Even though the two ansers are very close everywhere, 
they are not identical...
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Conclusion
• In the last ten months, a lot of progress was made to 

compute two-loop multi-leg amplitudes/Wilson loops:
➡ Hexgon in 3+1 dimensions
➡ Octagon in special kinematics (1+1 dimensions)
➡ All even-sided polygons in 1+1 dimensions.

• Intriguing connection between strong and weak coupling 
to be understood.

• Along the way, we can start to fill up our tool box for 
multi-leg multi-loop computations:
➡ Multiple polylogarithms
➡ New insights from the theory of motives

• Interesting times are ahead in the N=4 SYM world!

[Heslop, Khoze]

Mittwoch, 15. September 2010
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A Recipe to compute Wilson loops

• Step 1:
We write down a Mellin-Barnes representation for each 
diagram, i.e., we replace denominators in the Feynman 
parameter integrals by contour integrals,

L.6. The Mellin-Barnes representation 184

L.6 The Mellin-Barnes representation

The Mellin-Barnes techniques rely on the following identity,

1

(A + B)λ
=

1

Γ(λ)

1

2πi

∫ +i∞

−i∞
dz Γ(−z)Γ(λ + z)

Bz

Aλ+z
. (L.32)

The contour in Eq. (L.32) is chosen in the standard way, i.e. it should separate the poles in Γ(−z)

from the poles in Γ(λ + z). We can apply Eq. (L.32) to the F -polynomial in Eq. (L.14), and break

it up into monomials in the Feynman parameters xi. The integration over the Feynman parameters

can now be easily performed in terms of Γ functions,

∫ 1

0

n
∏

i=1

dxi x
ai−1
i δ(1 − x1 . . . − xn) =

Γ(a1) . . . Γ(an)

Γ(a1 + . . . + an)
. (L.33)

In this way we have eliminated all the Feynman parameter integrals in terms of Mellin-Barnes

integrals, and we obtain a representation equivalent to the Mellin-Barnes representation of the

hypergeometric function, Eq. (I.5).

• This turns the Feynman 
parameter integral into residue 
calculus: 

Resz=−nΓ(z) =
(−1)n

n!
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• Step 2:
We exploit Regge exactness and we only compute the 
leading behavior of each integral in the quasi-multi-Regge 
limit

• The Mellin-Barnes approach is 
very suitable for this! 

A Recipe to compute Wilson loops
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• Step 2:
We exploit Regge exactness and we only compute the 
leading behavior of each integral in the quasi-multi-Regge 
limit

• The Mellin-Barnes approach is 
very suitable for this! 

Leading term in the expansion

A Recipe to compute Wilson loops
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• Step 3:
Iterate the limits: There are six different ways to take the 
limits, corresponding to the six cyclic permutations of the 
external legs.

• Regge-exactness allows us to 
take all six limits at the same 
time!

Leading term in the expansion

A Recipe to compute Wilson loops
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• Step 3:
Iterate the limits: There are six different ways to take the 
limits, corresponding to the six cyclic permutations of the 
external legs.

• Regge-exactness allows us to 
take all six limits at the same 
time!

Leading term in the expansion

in limit1

Leading term in the expansion
in limit 2

A Recipe to compute Wilson loops
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• Step 4:
Sum up the remaining towers of residues:

∞�

n=1

un
i

nk
= Lik(ui)

∞�

n=1

un
i

n
= − ln(1− ui)

A Recipe to compute Wilson loops

Mittwoch, 15. September 2010



Regge limits
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Figure 7.1: Amplitude in multi-Regge kinematics. The green blobs indicate the coefficient functions
(impact factors) and the Lipatov vertices describing the emission of gluons along the ladder.

where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)
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same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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t3
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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where we defined

xi =
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4 + . . . + p+
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)

• Multi-Regge kinematics
y3 � y4 � y5 � y6

|p3⊥|2 � |p4⊥|2 � |p5⊥|2 � |p6⊥|2
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)

• s-type invariants are large.
t-type invariants are small.
Conformal cross ratios become 
trivial [Del Duca, CD, Glover]

Mittwoch, 15. September 2010
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q1 = p1 + pn , and q2 = −p2 − p3,
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i " −|qi⊥|2. The coefficient functions C (0)
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Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
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Note that for n = 5 we recover
the Lipatov vertex defined in Eq. (7.15),

V
(0)
1

(q2; 4; q1) = V
(0) (q2; 4; q1).

(7.22)

In the limit of more restrict
ive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn

(7.23)

the amplitude must factoriz
e accordingly, which implies that the Lipatov vertices
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factoriz
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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where we defined
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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where we defined

xi =
p+

i
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3 + p+

4 + . . . + p+
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)

• The result is in fact even stronger:

|p3⊥|2 � |p4⊥|2 � |p5⊥|2 � |p6⊥|2

y3 � y4 � y5 � y6

• This result is in fact true for Wilson loops with an 
arbitrary number of edges and loops!

• Bottomline: it is enough to perform the computation in 
these simplified kinematics to obtain the two-loop six-
point Wilson loop in arbitrary kinematics!

The Wilson-loop is Regge-exact in this limit, i.e., it is the 
same in this special kinematics and in arbitrary kinematics

[Del Duca, CD, Smirnov]

Mittwoch, 15. September 2010
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Regge-exactness of Wilson loops
• The proof is very simple:

lnWn =
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�=1

f (�)
WL(�) w(1)

n (2�) + C(�)
WL + R(�)

n (uij)
This leads to M(1)

n = eεγΓ(1 + ε)(Γ(1 − ε)2/Γ(1 − 2ε))M(1)
n,BDDK. On the other hand,

for the Wilson loop, we have6 w(1)
n = eεγΓ(1+ ε)M(1)

n,BDDK. This leads to the following
correspondence between the Wilson loop and the amplitude at one loop,
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At one loop, the four- [15] and five-edged Wilson loops [16] are thus given by
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and at two loops [17, 18]
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We note that in (3.15) we have used the results of our two-loop calculation of the four-
point Wilson loop to correct the constant term in the corresponding result of [17].7
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estingly, the constant C(2)
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6In the following formulae we employ the redefinition of the renormalisation scale in (4.3).
7This discrepancy has also been noted independently by Marcus Spradlin, whom we thank for
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Symbols
• Simple example:

Li2(x) + ln(1− x) lnx = −Li2(1− x)− π2

6
Symbol(Li2(x)) = −(1− x)⊗ x

Symbol(ln(1− x) lnx) = (1− x)⊗ x + x⊗ (1− x)
Symbol(const) = 0

Symbol(Li2(x) + ln(1− x) lnx) = x⊗ (1− x)

= −Symbol(Li2(1− x))
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