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Why planar N=4 SYM..?

® Why are we interested in planar N=4 Super-Yang-Mills?
In the end, the world 1s not N=4 SYM, so we should rather

concentrate on QCD...
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Why planar N=4 SYM..?

® Why are we interested in planar N=4 Super-Yang-Mills?
In the end, the world 1s not N=4 SYM, so we should rather

concentrate on QCD...

® But in QCD, life 1s (too) hard...

® Aim: Find a ‘simpler’ gauge theory, that can act as a toy
model to explore the structure of gauge theory amplitudes
to higher loop orders.
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Why planar N=4 SYM..?

® N-=4 planar SYM 1s such a simpler gauge theory!

= |t 1s conformal to all orders in perturbation theory.

= AdS/CFT correspondence might even give some insight
into the strongly coupled sector of the theory.

= N=4 SYM amplitudes are part of QCD amplitudes, e.g.,

at one-loop level:

AZM _ quv\,[:4 o 4A./?7\Jf:1 4+ Aicalar

® A lot of new developments were made 1n the last few years,

and the field 1s developing very fast!
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Outline

® Several intriguing conjectures/observations in N=4 SYM:

= ABDK/BDS ansatz.
= MHYV amplitude - Wilson loop duality.

= Computation of two-loop remainder functions.
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The ABDK/BDS ansatz

® Anastasiou, Bern, Dixon and Kosower (ABDK)
formulated a conjecture for a generic two-loop MHV

amplitude in N=4 SYM:

M(Z)( ) =

l\.’)lr—\

(M (€)® + £ (e) MV (26) + C@ + O(e),

® Bern, Dixon and Smirnov (BDS) extended this conjecture
to all loop orders, by exponentiating the one-loop amplitude:

€e) =1+ Z a' MW (e
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FO(e) M (1) + €O + ED (e
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The ABDK/BDS ansatz
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The ABDK/BDS ansatz
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The ABDK/BDS ansatz

n=4

n=5

n

1=2

4

J (num.)

1=3

4

[ABDK; BDS]

| Bern, Czakon,

Kosower, Roiban,

Smirnov]
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The ABDK/BDS ansatz

Il
N

n=4 n=5 n

1=2 J J (num.) ® (num.)

-3 v

[ABDK; BDS]

| Bern, Czakon, | Bern, Dixon,

Kosower, Roiban, Kosower, Roiban,

Smirnov]| Spradlin, Vergu, Volovich]

® What goes wrong forn =6 ..7

® The answer comes from the Wilson loop!
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Wilson loops in N=4 SYM

® Definition of a Wilson loop:

W|C,] = Tr P exp ig%de:“(T)Au(x(T))-

® It 1s conjectured that Wilson loop along an nz-edged polygon
is equal to an n-point MHYV scattering amplitude:

\ /
‘ >: — < ? Pi — Lji+1 — Lj — Li+1
/

[Alday, Maldacena;
Drummond, Korchemsky, Sokatchev]

® Proven analytically at one-loop for arbitrary 2, and at two-

IOOPS forn=4. 5. 6. [ Drummond, Henn, Korchemsky, Sokatchev;
T Brandhuber, Heslop, Spence]
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Wilson loops in N=4 SYM

® Wilson 100ps possess a conformal symmetry, and 1t was
shown that a solution to the corresponding Ward identities
is the BDS ansatz, e.g., at two-loops,

| Drummond, Henn,

Korchemsky, Sokatchev]

w? (e) = £, () wl (2¢) + CF) 4+ O(e),
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Wilson loops in N=4 SYM

® Wilson 100ps possess a conformal symmetry, and 1t was
shown that a solution to the corresponding Ward identities
is the BDS ansatz, e.g., at two-loops,

| Drummond, Henn,

Korchemsky, Sokatchev]

w® (e) = £ () w®(2e) + C +RP (u;;)+ O(e),

® ... but we can always add a arbitrary function of conformal
invariants and we still obtain a solution to the Ward

identities! 9 9
RV ERETER Y,
Ui = 12 2
1741541
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The breakdown of BDS
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The breakdown of BDS
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The breakdown of BDS

1’1=4 n=5 n=6
1=2 um.) m.)
1=3 /
//
No non trivial There are three non
conformal cross- trivial cross ratios:
' 512 S45 S93 S56
ratios, Uy = Uy = |
(1) (1) S$123 5345 $123 5234
Uz —

Y]
5234 5345
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Strong coupling

® At strong coupling, the AdS/CFT machinery was used to

compute some special cases of the remainder function

= for six edges, in 3+1 dimensions when all cross ratios
are equal

T

R(u,u,u) = ;

1 3
+ 3—ng2 + 3 (log” u + 2Lis (1 — u))
[Alday, Gaiotto, Maldacena]
= for eight edges, in 1+1 dimensions

stron 1 _ 1 I

OO Im| sinh ¢
dt l (1 —27T|m|cosht)
i /_ M ann(2t + 2ig) T
[Alday, Maldacena]
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Weak coupling

® Anastasiou, Brandhuber, Heslop, Khoze, Spence and
Travaglimi worked out the two-loop Wilson loop diagrams:

® Each of these diagrams 1s an integral, similar to a Feynman
parameter integral.

® Numerical evaluations of the integrals allow to compare to
the strong coupling answer.
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Weak coupling vs. strong coupling

® Hexgon ® Octagon
4 R ) (. A
: 0641 )
4 * 0.65% | ) }
0.66«%H\ : )
3r u ) B B ! 1
~0.67 l\ 0 T / i
2r 068 - ! \{\ I i
1 - log(u) -0.69 | | "‘“ | |
2 ' 2 4 log(10) T
\ \ ) . 05 1.0 15

[ Brandhuber, Heslop, Khoze

Spence, Travaglini]

[Alday, Gaiotto, Maldacena]

® Could it be that the strong coupling result 1s equal to
the weak coupling result???

® Only analytic results at weak coupling can tell...
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Weak coupling

® [or n = 6, many of the integrals can be computed explicitly,
but one 1s particularly "hard’:

fH(pth,pa; (1, Q2, Q3)
3

= et ) (Iom) [/ (I de)st - o) (s s

1=1

N = 2(p1p2)(p1p3) [041042(1 —T1) + 04304171] +  2(p1p3) (p2ps) [043041(1 —73) + 0420‘373]
|

+  2(p1p2) (p2p3) 042043(1—Tz)+04104272] + 2041042[2(1?1192)(193@3)—(pgpg)(png)—(p3p1)(p2623)}

T
® The integrals do not explicitly depend on conformal ratios.

But 1s all this complexity really needed..?
® Could we go to simplified kinematics?
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Regge limits

® Quasi-multi-Regge kinematics
00000 /72.0QQQ¢

Yz > Y4 = Ys > Ys

QQY
"0,

|p3L|2 s |104u|2 = |p5¢|2 i |p6¢\2

00090 7309Q0¢

® Conformal cross ratios are no

longer trivial
[ Del Duca, CD, Glover]
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The six-point remainder function

® Conclusion: Itis enough to compute the remainder
function 1n this restricted area of phase space.

® In the limit, all integrals are

= 5t most three-fold.

= dependent on conformal cross ratios only.

® The resulting integrals are much simpler and can be
solved 1n a closed form, and we can extract the two-loop
six-point remainder function,

w® (e) = i () wd(2e) + Oy + Ry, + O(e)

[ Del Duca, CD, Smirnov]
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The six-point remainder function

® The result is completely expressed in terms Goncharov'’s
multiple polylogarithm,

“ dt
G 2) = / G@it) | Lin(e / EAVINC
0

t—a

® Some of them depend on complicated arguments:

R R R R L
Yokl = 2(1 —uj)y

(i) B U — Uy = \/—4ujukul + 2upu; + ui + u%

ikl = 2 (1 — uj) ug

® The result 1s expressed as a very complicated combination

of multiple polyogarithms.
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The six-point remainder function

2
Ré,e/‘/L(ul,UQ,’LLg) = (H.1)
1, 1 s — 1 1, (1 1 1, (1 1
=G ) 71 —7m°G ) 71 —m°G ) 71
247T (1—U1 u1 +ug — 1 + 247T (ul Ul + ug 247T U1 Ul + us +

1—’U/27U2—|—U3_1
1, 1 up — 1 1 , 1 1 1 5 1 1
—7°G .1 —7 G .1 —7 G .1
247T (1—U3’U1—I—U3—1’ )+247T <U3,U1—|—U3’ )+247T (U3’U2—|—’U;37
3 1 1 3 1 1 3 1 1

~G (0,0, , ;1) + -G (0,0, , ;1) + -G (0,0, , ;1) +
U1 Ul + ug 2 U1 Ul + Us

3 1 1 3 1 1 3 1 1

-G (0,0, —, 1) +-=G (0,0, —, 1) +-=G{0,0,—, 1) —
2 U9 U2 + U3 2 U3 Ul + Uus 2 U3 U2 + U3

1 1 1 1 1 1 1 1
-G(0,—,0,—;1)+G|0,—,0, 1) —=G(0,—,0,—:1 ) +

2 (5 U9 (5 Ul + U9 2 (5 us

1 1 1 1 1 1 1 1 1 1
G(O,—,O, ;1) — =G0, —,—, ;1) — =G0, —,—, ;1) —
(5] U1 + U3 2 Ul Ul Ul + ug 2 Ul Ul Ul + us

1 1 1 1 1 1 1 1 1 1 1
-G (0, —, —, 1) —=G |0, —, —, 1) —=G ({0, —,0,—;1 | +
2 Ul U9 Ul + u9 2 Ul U3 Ul + us 2 U9 (8

1 1 1 1 1 1 1
G(O,—,O, ;1)——G(O,—,O,—;l)—i—G(O,—,O, ;1)—
U2 U1 + U9 | 2 U2 us U2 UQ+U3

H
iW2G( L us — 1 ;1)—|—i7T2G(1, ! ;1>—|—i7T2G<1, L ;1>—|—
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Weak coupling vs. strong coupling
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Weak coupling vs. strong coupling

4 N
R(u,u,u)

................
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Weak coupling vs. strong coupling
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Weak coupling vs. strong coupling
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The six-point remainder function

® [f we want to compare directly the analytic expressions,
we need 1dentities among multiple polylogarithms...

= Needs the intervention of a mathematician!

® The theory of motives provides a way to handle such
expression

- Hand-waving 1dea: Associate a ‘tensor calculus’ to
polylogarithms that incorporates the functional

identities.
[ Goncharov, Spradlin,

Vergu, Volovich]
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The six-point remainder function

3

R, s, u5) = 3 (L4(xj,x;) _ %Li4(1 _ l/ui)>

1=1

- (Zng 11/%) +J—4+X71T_; (J°+<(2))

T = U; T, r = :
2’&1%2%3

A = (Ul + Uo + U3 — 1)2 — 4“1“2“3‘

[ Goncharov, Spradlin,
Volovich, Vergu]

Mittwoch, 15. September 2010



Towards remainder functions
with more legs

® The techniques we developed for the computation of the
six-point remainder function can also be applied to
Wilson loops with more edges.

® We focus on the 1+1 dimensional setup studied at strong

coupling.
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Towards remainder functions
with more legs

® The techniques we developed for the computation of the
six-point remainder function can also be applied to
Wilson loops with more edges.

® We focus on the 1+1 dimensional setup studied at strong
coupling.

® The final answer involves 25.000 terms...
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Towards remainder functions
with more legs

® The techniques we developed for the computation of the
six-point remainder function can also be applied to
Wilson loops with more edges.

® We focus on the 1+1 dimensional setup studied at strong
coupling.

® The final answer involves 25.000 terms...

.. but they all collapse to

4

1 1 1
A0 ) = =T = g () (14 i (0 (145
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~0.64 |

Octagon 1n 1+1 dimensions

- LHJ HJ

i | | | | | s | | | | | | | | |
| 0.5 ) 10 15

—0.69 |-

® Same pattern as for the hexagon:

Even though the two ansers are very close everywhere,
they are not 1dentical...
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Conclusion

® In the last ten months, a lot of progress was made to
compute two-loop multi-leg amplitudes/Wilson loops:

= Hexgon in 3+1 dimensions
= (ctagon 1n special kinematics (1+1 dimensions)
= All even-sided polygons in 1+]1 dimensions. [Heslop, Khoze]

® Intriguing connection between strong and weak coupling
to be understood.

® Along the way, we can start to fill up our tool box for
multi-leg multi-loop computations:

= Multiple polylogarithms

= New insights from the theory of motives

® Interesting times are ahead in the N=4 SYM world!
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Back ups
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A Recipe to compute Wilson loops

® Step I:

We write down a Mellin-Barnes representation for each
diagram, 1.e., we replace denominators in the Feynman

parameter integrals by contour integrals,

1 1 1 [T B*
(A+ By T(N) 2mi /m dzI(=2) T +2) 7
e o o o

® This turns the Feynman
parameter integral into residue

calculus:

(=1)"

n!

Res,—_,I'(2) =
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A Recipe to compute Wilson loops

® Step 2:

We exploit Regge exactness and we only compute the
leading behavior of each integral in the quasi-multi-Regge

limit A

® The Mellin-Barnes approach 1s
very suitable for this! >
® o0 0|0 o
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A Recipe to compute Wilson loops

® Step 2:

We exploit Regge exactness and we only compute the
leading behavior of each integral in the quasi-multi-Regge

limit A

A

e )

[eading term 1n the expansion

® The Mellin-Barnes approach 1s
very suitable for this!
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A Recipe to compute Wilson loops

® Step 3:

I[terate the limits: There are six different ways to take the
limits, corresponding to the six cyclic permutations of the

external legs. \
A
® Regge-exactness allows us to
take all six limits at the same
time! ® © 0 o|lo o >

s

[eading term 1n the expansion
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A Recipe to compute Wilson loops

® Step 3:

I[terate the limits: There are six different ways to take the
limits, corresponding to the six cyclic permutations of the
external legs. \

® Regge-exactness allows us to

time!

take all six limits at the same >

Leading term in the expansion

n limit 2

[eading term 1n the expansion

n hmitl
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A Recipe to compute Wilson loops

® Step 4:
Sum up the remaining towers of residues:
f
= un A
Y (1 —
> U -
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Regge limits

® Multi-Regge kinematics
Yz > Yqa > Ys > Yg

\p3¢!2 ad !p4¢\2 ~ \p5¢\2 = \pM!Q

® s-type invariants are large. w%w

t-type invariants are small.

Conformal cross ratios become
. . [Del Duca, CD, Glover]
trivial
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Regge-exactness of Wilson loops

® The result 1s in fact even stronger:

The Wilson-loop 1s Regge-exact in this limit, 1.e., 1t 1s the
same 1n this special kinematics and in arbitrary kinematics
0000073 09QQ¢

Y3z > Ya = Ys > Ye

’PSHQ = |p4¢\2 = \p5¢\2 = \p6¢|2
000007209009

® This result 1s in fact true for Wilson loops with an
arbitrary number of edges and loops!  [Del Duca, CD, Smirnov]

® Bottomline: it 1s enough to perform the computation in
these simplified kinematics to obtain the two-loop six-
point Wilson loop 1n arbitrary kinematics!
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Regge-exactness of Wilson loops

® The proof i1s very simple:

In W, Z fie (€ wiP (26) + O3y + RE (ui;) +O(€)
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Regge-exactness of Wilson loops

® The proof i1s very simple:

In W, Z £ (€ wM(2¢) + €, + RO +(9(e)

conformal

ratios are
invariant.
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Regge-exactness of Wilson loops

® The proof 1s very simple:

conformal

(1 — ¢ | Brandhuber, .
wll) = g )/\/l,,(}) Heslop, ratios are
I (1 o 6) Travaglini]

1nvariant.
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Regge-exactness of Wilson loops

® The proof i1s very simple:

In W, Z (@

F(l — € 7 [ Brandhuber, COIl.formal
wy) = 2 Heslop, ratios are
I (1 - 6) Travaglini]

1nvariant.

Structure of the one-loop amplitude:

In Sij + Lis (1 _ uij) | Bern, Dixon,

Dunbar, Kosower]
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Regge-exactness of Wilson loops

® The proof i1s very simple:

In W, Z (6)

F(l — € 7 [ Brandhuber, COIl.formal
wy) = 2 Heslop, ratios are
I (1 - 6) Travaglini]

1nvariant.

Structure of the one-loop amplitude:

| Bern, Dixon,

Dunbar, Kosower]
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Regge-exactness of Wilson loops

® The proof i1s very simple:

In W, Z (6)

[ Brandhuber, COnformal

Heslop, ratios are

Travaglini]

1nvariant.

| Bern, Dixon,
Dunbar, Kosower]

Log’s are not power suppressed.
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Symbols

® Simple example:
Lig(x) + In(1 — ) Inx = —Lis (1 — x)

7.‘.2

Symbol(Lis(x)) = —(1 —2) @ x
Symbol(In(l —x)Inz)=(1—-2) x4+ 2R (1 — x)
Symbol(const) = 0

Symbol(Liz(z) +In(l —x)Inz) =2 ® (1 — x)

= —Symbol(Lis(1 — x))
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